Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ДЕЛЕНИЕ ОКРУЖНОСТИ НА РАВНЫЕ ЧАСТИ И ПОСТРОЕНИЕ ПРАВИЛЬНЫХ ВПИСАННЫХ МНОГОУГОЛЬНИКОВ



Деление окружности на равные части и построение правильных вписанных многоугольников можно выполнить как циркулем, так и с помощью угольников и рейсшины.


Деление окружности на четыре равные части и построение правильного вписанного четырехугольника. Две взаимно перпендикулярные центровые линии делят окружность на четыре равные части (рис. 115, а). Соединив точки пересечения этих линий с окружностью прямыми, получают правильный вписанный четырехугольник.

Деление окружности на восемь равных частей и построение п р а в ильного вписанного восьмиугольника. Две взаимно перпендикулярные линии, проведенные под углом 45° к центровым линиям с помощью угольника с углами 45, 45 и 10° и рейсшины (рис. 115, б), вместе с центровыми линиями разделят окружность на восемь равных частей. Деление окружности на восемь равных частей можно выполнить циркулем. Для этого из: чек 1 и 3 (точки пересечения центровых линий с окружностью) произвольным радиусом Делаются засечки до взаимного пересечения, м же радиусом делают две засечки из точек и 5 (рис. 115, в). Через точки пересечения сечек и центр окружности проводят прямые линии до пересечения с окружностью в точках 2, 4, 6, 8.

Если полученные восемь точек соединить последовательно прямыми линиями, то получится правильный вписанный восьмиугольник (рис. 115, в).
Деление окружности на три равные части и построение правильного вписанного треугольника выполняют с помощью циркуля или угольника с углами 30, 60 и 90° и рейсшины.


При делении окружности циркулем на три равные части из любой точки окружности, например из точки А пересечения центровых линий с окружностью (рис. 116, ей б), проводят дугу радиусом R, равным радиусу данной окружности, получают точки 1 и 2. Третья точка деления (точка 3) будет находиться на противоположном конце диаметра, проходящего через точку А. Последовательно соединив точки 1, 2 и 3, получают правильный вписанный треугольник. При построении правильного вписанного треугольника, если задана одна из его вершин, например точка 1, находят точку А. Для этого через заданную точку 1 проводят диаметр (рис. 116, в). Точка А будет находиться на противоположном конце этого диаметра. Затем проводят дугу радиусом R, равным радиусу данной окружности, получают точки 2 и 3.

При делении окружности на три равные части с помощью угольника и рейсшины через точку 1 под углом 60° проводят две прямые линии до пересечения с окружностью в точках 2 и 3 (рис. 117, а, б), точки 2 и 3 соединяют и получают правильный вписанный треугольник (рис. 117, в).

 

Деление окружности на шесть равных частей и построение правильного вписанного шестиугольника выполняют с помощью угольника с углами 30, 60 и 90° и рейсшины или циркуля.

 

При делении окружности на шесть равных частей циркулем из двух концов одного диаметра радиусом, равным радиусу данной окружности, проводят дуги до пересечения с окружностью в точках 2, 6 и 3, 5 (рис. 118). Последовательно соединив полученные точки, получают правильный вписанный шестиугольник. Деление окружности на шесть равных частей и построение правильного вписанного шестиугольника с помощью угольника и рейсшины показано на рис. 119 и 120.

Деление окружности на двенадцать равных частей и построение правильного вписанного двенадцатиугольника выполняют с помощью угольника с углами 30, 60 и 90° и рейсшины или циркуля.
При делении окружности циркулем из четырех концов двух взаимно перпендикулярных диаметров окружности проводят радиусом, равным радиусу данной окружности, дуги до пересечения с окружностью (рис. 121). Соединив полученные точки, получают двенадцатиугольник.

При построении двенадцатиугольника с помощью угольника и рейсшины точки деления строят, как показано на рис. 119 и 120.
Деление окружности на пять и десять равных частей и построение правильного вписанного пятиугольника и десятиугольника показано на рис. 122.

Половину любого диаметра (радиус) делят пополам (рис. 122, а), получают точку А. Из точки А, как из центра, проводят дугу радиусом, равным расстоянию от точки А до точки 1, до пересечения со второй половиной этого диаметра, в точке В (рис. 122, б). Отрезок 1В равен хорде, стягивающей дугу, длина которой равна 1/5 длины окружности. Делая засечки на окружности (рис. 122, в) радиус сом R, равным отрезку 1В, делят окружность на пять равных частей. Начальную точку 1 выбирают в зависимости от расположения пятиугольника. Из точки 1 строят точки 2 и 5 (рис. 122, в), затем из точки 2 строят точку 3, а из точки 5 строят точку 4. Расстояние от точки 3 до точки 4 проверяют циркулем; если расстояние между точками 3 и 4 равно отрезку 1В, то построения были выполнены точно. Нельзя выполнять засечки последовательно, в одну сторону, так как происходит набегание ошибок и последняя сторона пятиугольника получается перекошенной. Последовательно соединив найденные точки, получают пятиугольник (рис. 122, г).

Деление окружности на десять равных частей выполняют аналогично делению окружности на пять равных частей (рис. 122), но сначала делят окружность на пять частей, начиная построение из точки 1, а затем из точки 6, находящейся на противоположном конце диаметра (рис. 123, а). Соединив последовательно все точки, получают правильный вписанный десятиугольник (рис. 123, б).

 

 

 

Деление окружности на семь и четырнадцать равных частей и построение правильного вписанного многоугольника и четырнадцатиугольника показано на рис. 124 и 125. Из любой точки окружности; например точки - А, радиусом заданной окружности проводят (рис. 124, а) до пересечения с окружностью в точках В и D. Соединим точки В прямой. Половина полученного отрезка (в ном случае отрезок ВС) будет равна хорде, которая стягивает дугу, составляющую 1/7 длины окружности. Радиусом, равным отрезку ВС, ставят засечки на окружности в последовательности, показанной на рис. 124, б. Соединив последовательно все точки, получают правильно вписанный семиугольник (рис. 124, в). Деление окружности на четырнадцать равных частей выполняется делением окружности семь равных частей два раза от двух точек (125, а).

 

 

Сначала окружность делится на семь равных частей от точки 1; затем то же построение отклоняется от точки 8. Построенные точки отклоняют последовательно прямыми линиями получают правильный вписанный четырнадцатиугольник (рис. 125, б).

 

СОПРЯЖЕНИЯ

Рассматривая детали, видим, что в их конструкции часто одна поверхность переходит в другую. Обычно эти переходы делают плавными, что повышает прочность деталей и делает их более удобными в работе. На чертеже поверхности изображаются линиями, которые также плавно переходят одна в другую.
На рис. 126, а изображена деталь, в которой плавные переходы одних плоскостей в другие представляют собой цилиндрические поверхности. На чертеже (рис. 126, б) эти плоскости изображены прямыми линиями, а цилиндрические поверхности - дугами окружностей. Плавные переходы от одной прямой к другой в этих случаях выполняются дугой заданного радиуса.

Плавный переход одной цилиндрической поверхности в другую может являться цилиндрической поверхностью (рис. 127, а). На чертеже эти цилиндрические поверхности изображены дугами окружностей, (рис. 127, б). В этом случае плавный переход одной дуги окружности в другую осуществляется дугой окружности заданного радиуса.

На рис. 126, а и 127, а рассмотрены простейшие примеры плавных переходов поверхностей. В чертежах более сложных деталей плавные переходы между поверхностями изображаются различными сочетаниями прямых, окружностей и их дуг. Вариантов таких сочетаний может быть много, но их объединяет одно - плавность перехода. Такой плавный переход одной линии (поверхности) в другую линию (поверхность) называют сопряжением. При построении сопряжения необходимо определить границу, где кончается одна линия и начинается другая, т. е, найти на чертеже точку перехода, которая называется точкой сопряжения или точкой касания.

Задачи на сопряжения условно можно разделить на три группы.

Первая группа задач включает в себя задачи на построение сопряжений, где участвуют прямые линии. Это может быть непосредственное касание прямой и окружности, сопряжение двух прямых дугой заданного радиуса, а также проведение касательной прямой к двум окружностям.

Построение окружности, касательной к прямой, связано с нахождением точки касания и центра окружности.

Задана горизонтальная прямая АВ, требуется построить окружность радиусом R, касательную к данной прямой (рис..128). Точка касания выбирается произвольно. Так как точка касания не задана, то окружность радиуса R может коснуться данной прямой в любой точке. Таких окружностей можно провести множество. Центры этих окружностей (O1, O2 и т. д.) будут находиться на одинаковом расстоянии от заданной прямой, т. е. на линии, расположенной параллельно заданной прямой АВ на расстоянии, равном радиусу заданной окружности (рис. 128). Назовем эту линию линией центров. Проведем линию центров параллельно прямой АВ на расстоянии R. Так как центр касательной окружности не задан, возьмем любую точку на линии центров, например точку О. Прежде чем проводить касательную окружность, следует определить точку касания. Точка касания будет лежать на перпендикуляре, опущенном из точки О на прямую АВ. В пересечении перпендикуляра с прямой АВ получим точку К, которая будет точкой касания. Из центра О радиусом R от точки К проведем окружность. Задача решена.

 

В детали, которая изображена на рис. 129, а, пластина плавно переходит в цилиндр. При выполнении чертежа этой детали необходимо построить плавный переход прямой в окружность. Задача аналогична предыдущей, но дополнена условием, что точка касания задана, так как задан размер А (рис. 129, б), который определяет величину прямолинейного участка.

 

 

Отложив размер Л, находят точку касания (точку К), затем из точки К восставляют перпендикуляр, на котором откладывают радиус R заданной окружности, и находят центр окружности (точку О). При обводке сначала от точки касания проводится дуга заданного радиуса, а потом - прямая.
Из сказанного следует:

1. центр окружности, касательной к прямой, лежит на прямой (линия центров), проведенной параллельно заданной прямой, на расстоянии, равном радиусу данной окружности;

2. точка касания лежит на перпендикуляре, проведенном из центра окружности к заданной прямой.

Сопряжение двух прямых. На плоскости две прямые могут располагаться параллельно или под углом друг к другу. На рис. 130 приведены примеры различных сопряжений двух прямых. Чтобы построить сопряжение двух прямых, необходимо провести окружность, касательную к этим двум прямым.

Сопряжение двух параллельных прямых. Чтобы построить сопряжение двух параллельных прямых, необходимо провести дугу окружности, касательной к этим прямым (рис. 131). Радиус этой окружности будет равен половине расстояния между заданными прямыми. Так как точка касания не задана, подобных окружностей можно провести множество. Центры их будут находиться на прямой, проведенной параллельно заданным прямым на расстоянии, равном половине расстояния между ними. Эта прямая будет линией центров. Точки касания (К и K1) лежат на перпендикуляре, опущенном из центра касательной окружности на заданные прямые (рис. 131, а). Так как центр касательной окружности не задан, перпендикуляр проводится произвольно. Отрезок КК1 делят пополам (рис. 131, б), проводят через точки пересечения засечек прямую линию параллельно заданным прямым, на которой будут располагаться центры окружностей, касательных к заданным параллельным прямым, т. е. эта линия будет линией центров. Поставив ножку циркуля в точку О, проводят дугу сопряжения (рис. 131, в) от точки К до точки К1.

 

 

Сопряжение двух непараллельных прямых. Две непараллельные прямые располагаются друг к другу под углом, который может быть прямым, тупым или острым. При выполнении чертежей деталей часто такие углы необходимо скруглить дугой заданного радиуса (см. рис. 130). Скругление углов на чертеже есть не что иное, как сопряжение двух непараллельных прямых дугой окружности заданного радиуса. Для выполнения сопряжения необходимо найти центр дуги сопряжения и точки сопряжения. Известно, что если в сопряжении участвует прямая линия, то центр дуги сопряжения находится на линии центров, которая проводится параллельно заданной прямой на расстоянии, равном радиусу R дуги сопряжения. Поскольку угол образован двумя прямыми, то проводят две линии центров параллельно каждой прямой на расстоянии, равном радиусу R дуги сопряжения (рис. 132). Точка их пересечения будет центром дуги сопряжения.

 

 

Для нахождения точек сопряжения из точки О опускают перпендикуляры на заданные прямые и получают точки сопряжения К и К1 (рис. 132). Зная точки и центр сопряжения, из точки О радиусом R проводят дугу сопряжения. При обводке чертежа следует сначала обвести дугу, а затем касательные прямые.

При построении сопряжения прямого угла упрощается проведение линии центров, так как стороны угла взаимно перпендикулярны. От вершины угла откладывают отрезки, равные радиусу R дуги сопряжения, и через полученные точки К и К1, которые будут точками касания, проводят две линии центров, параллельные сторонам угла. Они будут являться одновременно и линиями центров, и перпендикулярами, определяющими точки сопряжения К и К1 (рис. 132, в).

Построение прямых, касательных к окружностям, зависит от условия задачи. Может быть задана окружность с точкой касания, или окружность и точка, из которой следует провести касательную прямую, или две окружности, к которым нужно провести касательную прямую. Подход к решению этих за дач будет различным, но во всех случаях существует одно правило: точка касания должна лежать на перпендикуляре, проведенном из центра окружности к прямой.

 

Проведение прямой, касательной к окружности через точку, лежащую на окружности, показано на рис. 133. Так как точка касания лежит на перпендикуляре, проведенном из центра окружности к прямой, то касательную прямую следует проводить через заданную точку А перпендикулярно радиусу, соединяющему точку А с центром окружности О (рис. 133). Это построение аналогично построению перпендикуляра к прямой через заданную точку, которое можно выполнить с помощью двух угольников (рис. 134). Сначала угольник 1 (рис. 134, а) кладется так, чтобы одна его сторона совпала с точками О и А, затем к угольнику 1 прикладывается угольник 2, который будет направляющим, по которому сдвигается угольник 1 (рис. 134, б). В новом положении угольник 1 становится направляющим, а угольник 2 устанавливается на угольник 1 так, чтобы одна сторона его прямого угла прошла через точку А (рис. 134, в). Через точку А по угольнику 2 проводят прямую, касательную к окружности.

 

 

Проведение прямой, касательной к окружности через точку, не лежащую на этой окружности. Даны окружность радиусом R и точка А, не лежащая на окружности (рис. 135, а), требуется провести из точки А прямую, касательную к данной окружности в верхней ее части. Для этого необходимо найти точку касания. Точка касания лежит на перпендикуляре, проведенном из центра окружности к касательной прямой. Следовательно, касательная и перпендикуляр образуют прямой угол. Зная, что всякий угол, вписанный в окружность и опирающийся на ее диаметр, является прямым, соединив точки А и О, принимают отрезок АО за диаметр описанной окружности. В пересечении описанной окружности и окружности радиуса R будет находиться вершина прямого угла (точка К). Отрезок АО делят пополам, получают точку 01 (рис. 135, б). Из центра 01 радиусом, равным отрезку АО1, проводят окружность, получают точки К и К1 в пересечении с окружностью радиуса R (рис. 135, в) Так как нужно провести только одну касательную к верхней части окружности, выбирают нужную точку касания. Этой точкой будет точка К. Точку К соединяют с точками А и О, получают прямой угол, который опирается на диаметр АО описанной окружности радиусом R1. Точка К - вершина этого угла (рис. 135 г), отрезки ОК и АК - стороны прямого угла, следовательно, точка К будет искомой точкой касания, а прямая АК - искомой карательной.

 

 

Проведение прямой, касательной к двум окружностям. Даны две окружности радиусами R и R1, требуется построить касательную к ним. Возможны два случая касания: внешнее и внутреннее.
При внешнем касании касательная прямая находится с одной стороны от окружностей и не пересекает отрезок, соединяющий Центры данных окружностей (рис. 136, а). При внутреннем касании касательная прямая находится с разных сторон от окружностей и пересекает отрезок, соединяющий центры окружностей (рис. 136, б).

 

 

В н е ш н е е к а с а н и е. Прежде всего необходимо найти точки касания. Известно, что они должны лежать на перпендикулярах, проведенных из центров окружностей (О и 01') к касательной. Рассмотрим рис. 137, г, где задача уже решена. Найденные точки касания К1 и Кз лежат на перпендикулярах O1К1 и О1Са. Если перемещать касательную К1К2 параллельно самой себе в направлении центров заданных окружностей, то точки К1 и К2 будут скользить по перпендикулярам O1К1 и ОК1. В конце концов точка Кз совпадет с центром О (окружности меньшего радиуса, а точка К1 - с точкой К). Так как касательная К1Кз перемещалась параллельно самой себе, то отрезки КзО и К1К равны, и отрезок К3О равен радиусу R. Через точку К из центра 01 проводим вспомогательную окружность радиусом R2 = R1-R. Далее построение будет как в предыдущей задаче - проведение прямой, касательной к окружности,, из заданной точки, не лежащей на этой окружности.

На рис. 137 показано поэтапное построение касательной к двум окружностям. Сначала строят касательную ОК из центра О к окружности радиуса R2 (рис. 137, а, б, в). Касательную ОК перемещают параллельно самой себе. Точки касательной при этом будут перемещаться по перпендикулярам к ней. Перпендикуляр 01К, по которому перемещается точка К, продолжают до пересечения с заданной окружностью радиуса R1, получают точку К1. Из точки О перпендикулярно ОК или параллельно 01К1 проводят прямую. Она будет тем перпендикуляром, по которому перемещается второй конец касательной ОК. В пересечении этого перпендикуляра с окружностью радиуса R получают вторую точку касания - Кз. Соединив точки К1 и К3, получают внешнюю касательную к двум заданным окружностям (рис. 137, г).

В н у т р е н н е е к а с а н и е. Построение внутренней касательной к двум заданным окружностям выполняют аналогично построению внешней касательной, только вспомогательную окружность радиуса R" проводят из центра 01 суммой радиусов R3 = R1 + R (рис. 138). Центры О и 01 соединяют прямой и отрезок 001 делят пополам в точке О3, из точки Оз проводят окружность радиуса R3. получают точку К. Точку К соединяют с центрами О и 01. Отрезок 01К пересекает окружность радиуса R1 в точке К1. Из центра О параллельно КО1 проводят прямую до пересечения ее с окружностью радиуса R в точке К3. Точки К1 и Кз будут точками касания, соединив которые получают внутреннюю касательную к двум заданным окружностям (рис. 138, б).

Вторая группа задач на сопряжения включает в себя задачи, в которых участвуют только окружности и дуги. Плавный переход одной окружности в другую может происходить или непосредственным касанием, или через третий элемент - дугу окружности.

К а с а н и е двух окружностей может быть внешним (рис. 139, а) или внутренним (рис. 140, а).

 

В н е ш н е е к а с а н и е. При внешнем касании двух окружностей расстояние между центрами этих окружностей будет равно сумме их радиусов (рис. 139).

Например, требуется построить плавный переход от окружности радиуса R к окружности радиуса R1 с внешней стороны, точка касания не задана. К окружности радиуса R можно построить множество касательных окружностей радиуса R1 с внешним касанием (рис. 139, б). Их центры (01, 02 и т. д.) будут находиться от центра О на одинаковом расстоянии, т. е. на окружности радиуса R2=R+R1 проведенной из центра О заданной окружности. Точки касания К, К1 и т. д. лежат на прямых, соединяющих центры сопрягающихся окружностей (рис. 139, б).

На рис. 139, в показано построение внешнего касания двух окружностей с произвольно выбранной точкой касания К.

В н у т р е н н е е к а с а н и е. При внутреннем касании двух окружностей одна из касательных окружностей находится внутри другой окружности, и расстояние между центрами этих окружностей будет равно разности их радиусов (рис. 140).

 

Например, требуется построить плавный переход от окружности радиуса R к окружности радиуса R1 с внутренней стороны, точка касания не задана. К окружности радиуса R можно построить множество касательных окружностей радиуса R1 с внутренней стороны (рис. 140, б). Их центры (01, О2 и т. д.) будут находиться на одинаковом расстоянии от центра О, т. е. на окружности радиуса R2 = R - R1, проведенной из центра О (рис. 140, б). Точки касания К, К1, К2 и т. д. лежат на прямых, проходящих через центры сопрягающихся окружностей (рис. 140, б). Так как точка касания не задана, на рис. 140, в показано построение внутреннего сопряжения двух окружностей с произвольно выбранной точкой касания.

Из рассмотренного выше следует, что если в сопряжении участвуют только окружности, то центр дуги сопряжения лежит на окружности, проведенной из центра заданной окружности радиусом, равным сумме или разности радиусов заданных окружностей, в зависимости от внешнего или внутреннего касания, точка касания лежит на прямой, соединяющей центры сопрягающихся окружностей. Для нахождения точки касания достаточно при внешнем касании только соединить центры (рис. 140, в), а ври внутреннем касании - соединить и продлить эту прямую. Сопряжение двух окружностей дугой заданного радиуса может быть внешним, внутренним и смешанным.

Внешнее сопряжение двух заданных окружностей дугой заданного радиуса. Если обе сопрягаемые окружности располагаются снаружи сопрягающей дуги, то центр этой дуги будет находиться от заданных окружностей на расстоянии, равном сумме радиусов (дуги и соответствующей окружности). Даны две окружности радиусов R и R1 (рис. 141, а), требуется построить внешнее сопряжение дугой радиуса R2. Известно, что для окружности радиуса R центр дуги сопряжения находится на линии центров, проведенной суммой радиусов R + R2 из центра О. Для окружности радиуса R1 центр дуги сопряжения лежит на линии центров, проведенной радиусом R4 =  R1 + R2 из центра 01. Эти окружности (линии центров) проводят не полностью, а только до взаимного пересечения в точке О2 (рис. 141, а),. Точка О2 будет центром дуги сопряжения, так как она одновременно принадлежит двум линиям центров. Точка сопряжения лежит на прямой, соединяющей центр дуги сопряжения с центром заданной окружности, поэтому, соединяя точку О2 с точками О и 01 (рис. 141, б), в пересечении с заданными окружностями получают точки сопряжения К и К1. Из точки О2 радиусом R2 от точки К до точки К1 проводится дуга сопряжения. Затем от точек К и K1 обводят дуги радиусами R и R1 из центров О и 01 (рис. 141, б).

Внутреннее сопряжение двух окружностей дугой заданного радиуса. Сопрягаемые окружности располагаются внутри сопрягающей дуги, и центр сопрягающей дуги будет находиться от центров заданных окружностей на расстоянии, равном разности радиусов (дуги и соответствующей окружности).

Даны две окружности с радиусами R и R1 (рис. 142, а), требуется построить внутреннее сопряжение дугой радиуса R2 в верхней части. Известно, что для окружности радиуса R центр дуги сопряжения находится на линии центров, проведенной радиусом R3 = R2 - R из центра О заданной окружности. Для окружности радиуса R1 центр дуги сопряжения находится на линии центров, проведенной радиусом R4 =  R2 - R1 из центра 01 заданной окружности. В нижней части чертежа из центров О и 01 радиусами Rз и R4 проводят дуги до взаимного пересечения в точке О2, которая будет центром дуги сопряжения, так как является общей точкой для двух линий центров (рис. 142, а). Находят точки сопряжения. Для этого точку О2 (центр дуги сопряжения) соединяют с точками О и 01 прямыми линиями, которые продлевают до пересечения с заданными окружностями в точках К и К1, которые будут точками сопряжения (рис. 142, б).

Смешанное сопряжение двух окружностей дугой заданного радиуса. В этом случае дуга сопряжения с одной окружностью имеет внешнее касание, а с другой - внутреннее.

 

  

Даны две окружности с радиусами R и R1 (рис. 143), требуется построить сопряжение дугой радиуса R2 так, чтобы с окружностью радиуса R было внешнее касание, а с окружностью радиуса R1 - внутреннее. При внешнем касании линия центров - это окружность с радиусом, равным сумме радиусов заданной окружности и дуги сопряжения (R +R2), а при внутреннем - с радиусом, равным разности этих радиусов (R2 - R1). Поэтому из центра О проводят дугу (линию центров) радиусом R3, равным R + R2 (рис. 143), а из центра 01 - линию центров радиусом R4, равным R2 - R1 (рис. 143). В пересечении линий центров получают точку О2 (центр дуги сопряжения). Для нахождения точек сопряжения центр дуги сопряжения О2 соединяют с центрами О и 01 прямыми. Прямую О2О1 продолжают. В пересечении этих прямых с заданными окружностями получают точки сопряжения К и К1. Из точки О2 дугой радиуса R2 от точки К до точки К1 проводят дугу сопряжения (рис. 143).

Если две сопрягающиеся окружности имеют близко расположенные центры, то одна окружность может находиться внутри другой или они будут пересекаться друг с другом (рис. 144). Чтобы построить сопряжение, необходимо найти центр и точки сопряжения. Для этого радиусом Rз = R + R2 проводят дугу из центра О, а радиусом R4 = R1 - R2 - дугу линии центров из центра 01. В пересечении получают точку О2 - центр дуги сопряжения. Соединив точку О2 с точками О и 01 прямыми, получают точки сопряжения К и К1. Из центра О2 радиусом R2 проводят дугу сопряжения (рис. 144) от точки К до точки К1.

Третья группа задач включает в себя задачи на сопряжения прямой и дуги окружности дугой заданного радиуса.

Сопряжение прямой и дуги окружности дугой заданного радиуса. Выполняя такое построение, решают как бы две задачи: проведение касательной дуги к прямой и касательной дуги к окружности. Касание в этом случае может быть как внешним, так и внутренним.

Внешнее касание. Заданы прямая и дуга окружности радиуса R, требуется построить сопряжение дугой радиуса R1. Так как сопрягается прямая линия, то центр дуги сопряжения находится на прямой, проведенной параллельно заданной прямой на расстоянии, равном радиусу сопряжения R1 (рис. 145). А центр дуги сопряжения при внешнем касании двух окружностей находится на окружности радиуса R2, равного сумме радиусов R и R1. В пересечении прямой и окружности (линий центров) получают точку 01, которая является центром дуги сопряжения. Затем находят точки сопряжения. Одна точка сопряжения - это точка пересечения заданной прямой с перпендикуляром, опущенным из центра дуги сопряжения 0 на эту прямую (точка К). Вторая точка сопряжения находится на пересечении заданной окружности и прямой, соединяющей центр дуги сопряжения с центром этой окружности (точка К1). Из точки 01 радиусом R1 проводят дугу сопряжения от точки К до точки К1.

 

Внутреннее касание строится аналогично внешнему, только радиус R2 равен разности R1 -R (рис. 146).

 

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ СОПРЯЖЕНИЙ НА ЧЕРТЕЖАХ

Приступая к выполнению чертежа, проводят анализ графического изображения детали, т. е. определяют виды используемых сопряжений и способы их построения. При выполнении чертежа очень важна последовательность построений. Поэтому перед началом работы изображение мысленно разбивают на элементы и определяют последовательность их выполнения. Сначала вычерчивают элементы, которые будут сопрягаться, а затем строят сопряжения. При вычерчивании сопряжений необходимо точное построение точек сопряжения и центров дуг сопряжения.

Рассмотрим изложенное выше на примере чертежа подвески, изображенного на рис. 147. По цифрам в кружках можно проследить последовательность выполнения элементов чертежа.

Начинают построение изображения с проведения оси симметрии (1), затем откладывают расстояние между центрами отверстий (2 и 3) и проводят центровые линии. Дальнейшую последовательность построении проследите по цифрам. Обводку чертежа начинают с проведения окружностей и дуг от точек сопряжения (касания).

 

УКЛОН И КОНУСНОСТЬ

Поверхности деталей часто представляют собой плоскости, расположенные наклонно друг к другу. Например, в литых и штампованных деталях, в изделиях проката (рельсы, балки, швеллеры). На чертежах подобные плоскости изображаются прямыми линиями.
Уклон - это величина, которая характеризует наклон одной прямой относительно другой. На чертеже уклон выражается отношением двух чисел или в процентах. Обозначается уклон знаком >, размеры которого показаны на рис. 50, п. 18, согласно ГОСТ 2.304-81. Знак ставится перед числовым значением уклона над полкой линии выноски (рис. 148). Линия выноски заканчивается стрелкой, упирающейся в линию уклона. Острый угол знака должен быть направлен в ту же сторону, что и острый угол уклона.

 

Рассмотрим построение уклона, заданного отношением 1: 3, относительно вертикального и горизонтального направлений (рис. 148, а и б). Сначала строят прямой угол АОВ. При горизонтальном направлении уклона (рис. 148)

 а) откладывают отрезок произвольной величины по вертикальной стороне угла, получают точку А,, а при вертикальном направлении уклона (рис. 148, б) - по горизонтальной стороне угла. По второй стороне угла откладывают три таких отрезка, получают точку В. Соединив точки А и В прямыми, получают прямоугольный треугольник, гипотенуза которого будет располагаться под заданным уклоном.

         


На рис. 149 уклон задан в процентах (15%). В этом случае строят прямой угол с вершиной О. На одной стороне угла (в данном случае горизонтальной) от точки О откладывают величину, принятую за 100%, например 100 мм, а на второй - от той же точки О откладывают величину, равную процентам заданного уклона, в данном случае 15 мм. Полученные точки соединяют прямой, которая будет располагаться с заданным уклоном.

 

 

Если на чертеже требуется построить уклон 1: 10 через заданную точку К, построение начинают от заданной точки, положение которой на чертеже.определяют размеры т и п (рис. 150, а). Для построения уклона от точки К вправо продлевают прямую линию, на которой от точки К откладывают десять одинаковых отрезков произвольной величины.(рис. 150, б). Из конца последнего отрезка проводят перпендикуляр, на котором откладывают величину одного такого отрезка, получают точку А. Через точки А и К проводят прямую с заданным уклоном.

Провести прямую с заданным уклоном через заданную точку можно, построив на свободном месте чертежа заданный уклон, потом с помощью двух угольников, параллельно построенному уклону, провести через заданную точку прямую.

К о н у с н о с т ь - это отношение разноти диаметров двух поперечных сечений конуса к расстоянию между ними. Конусность обозначают буквой С, диаметр большего сечения - D, диаметр меньшего сечения - d, высоту - L. Конусность определяют по формуле С = (D - d)/L. Следовательно, для полного кругового конуса конусность определяется по формуле С = D/L (рис. 151). Конусность, так же как уклон, может быть задана на чертеже в процентах (20%) или отношением двух чисел (1: 5). Чаще конусность задается в виде отношения двух чисел и обозначается знаком ◄, размеры которого определяет ГОСТ 2.304-81 (см. рис. 50, п. 19). Вершина знака должна быть, направлена в сторону вершины конуса. Знак наносят над полкой линии-выноски (рис. 152, а) или над осевой линией (рис. 152, б).

 

Если конус рассечь плоскостью на две части, то конусности этих частей будут одинаковыми (рис. 153, а и б), Несколько конусов с параллельными образующими будут иметь одинаковую конусность (рис. 153, в).

 

 

На рис. 154 приведено построение чертежа заготовки пробки с конусностью 1: 5, диаметром Ø 30 большего основания и расстоянием между основаниями 50 мм. Сначала строят элементы без конусности (рис. 154, а). Зная, что конусность - для полного конуса - это отношение диаметра основания к высоте, от оси конуса в обе стороны по диаметру 030 симметрично относительно оси откладывают отрезок произвольной длины, который будет основанием вспомогательного конуса. По оси конуса от основания вспомогательного конуса откладывают пять таких отрезков. Соединив, полученную точку с концами основания вспомогательного конуса, получают конус с конусностью 1: 5 (рис. 154, а). Через концы диаметра 030 проводят прямые параллельно образующим вспомогательного конуса, до пересечения с вертикальной прямой, ограничивающей длину пробки, и получают меньшее основание усеченного конуса (рис. 154, б), размер которого не задан.

 

Если конусность небольшая, то заданный диаметр откладывают по осевой линии от основания в направлении высоты конуса столько раз, сколько указано в отношении. Построив тонкими линиями конус, отсекают часть заданной длины (рис. 155).

 

 

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как провести несколько параллельных прямых, пользуясь угольником?

2. Как провести перпендикуляр к прямой с помощью циркуля и линейки?

3.


Поделиться:



Последнее изменение этой страницы: 2019-05-17; Просмотров: 326; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.083 с.)
Главная | Случайная страница | Обратная связь