Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Свойства операций над множествами



Таблица истинности сложения по модулю 2

{\displaystyle a}
x

{\displaystyle b}
y

{\displaystyle a\oplus b}
f

0 0 0
1 0 1
0 1 1
1 1 0

Свойства

a+0=a{\displaystyle a\oplus 0=a} (идемпотентность)

a+1= не а{\displaystyle a\oplus 1={\bar {a}}} (отрицание)

a+a=0{\displaystyle a\oplus a=0}

a+b = b+a{\displaystyle a\oplus b=b\oplus a} (коммутативность)

(a+b)+c = a+(b+c){\displaystyle (a\oplus b)\oplus c=a\oplus (b\oplus c)} (ассоциативность)

{\displaystyle (a\oplus b)\oplus b=a}(a+b)+b=a

Не а + б = а + не б = (а=б){\displaystyle {\bar {a}}\oplus b=a\oplus {\bar {b}}=(a\equiv b)} (сравнения по модулю)

+ в данном ^ контексте слож.по.мод2 если что

Рассмотрим алгоритмы построения полинома Жегалкина булевой функции, заданной различными способами, а именно: совершенной ДНФ, произвольной ДНФ, формулой и таблицей истинности.

Алгоритм построения полинома Жегалкина по СовДНФ (основан на доказательстве теоремы о существовании полинома Жегалкина).

Начало. Задана совершенная ДНФ функции f(x1, …, xn).

Шаг 1. Заменяем каждый символ дизъюнкции на символ дизюнкции с исключением.

Шаг 2. Заменяем каждую переменную с инверсией x равносильной формулой x 1.

Шаг 3. Раскрываем скобки.

Шаг 4. Вычеркиваем из формулы пары одинаковых слагаемых.

Конец. Получен полином Жегалкина функции f(x1, …, xn).

Пример. Найдем полином Жегалкина мажоритарной булевой функции по ее совершенной ДНФ.

Алгоритм построения полинома Жегалкина по ДНФ (основан на равносильности K1 K2= K1 K2 K1K2).

Начало. Задана произвольная ДНФ функции f(x1, …, xn).

Шаг 1. Разбиваем ДНФ на пары конъюнкций, предпочтительно ортогональных (если число конъюнкций нечетно, одна из них остается без пары).

Шаг 2. Заменяем дизъюнкцию каждой пары конъюнкций K1 K2 формулой K1 K2 K1K2 или формулой K1 K2, если K1 и K2 ортогональны.

Шаг 3. В полученной формуле находим очередную дизъюнкцию A1 A2и заменяем ее формулой A1 A2 A1A2. Повторяем шаг 3 до тех пор, пока это возможно.

Шаг 4. Заменяем каждую переменную с инверсией x равносильной формулой x 1.

Шаг 5. Раскрываем скобки.

Шаг 6. Вычеркиваем из формулы пары одинаковых слагаемых.

Конец. Получен полином Жегалкина функции f(x1, …, xn).

Пример. Найдем полином Жегалкина мажоритарной функции по ДНФ.

Отметим, что полиномы мажоритарной функции, полученные в двух последних примерах, совпадают с точностью до порядка конъюнкций, и это естественно (по теореме о единственности полинома Жегалкина).

 

Алгоритм построения полинома Жегалкина по таблице истинности (основан на методе неопределенных коэффициентов).

Продемонстрируем идею метода на примере произвольной булевой функции двух аргументов f(x,y). Представим ее полиномом Жегалкина в форме с коэффициентами

Pf = c0 c1y c2x c3x y.

Подставив в данное равенство наборы значений аргументов, получим систему из четырех линейных уравнений с четырьмя неизвестными коэффициентами: c0, c1 c2, c3.

f(0,0) = c0 c10 c20 c30 0 = c0

f(0,1) = c0 c11 c20 c30 1 = c0 c1

f(1,0) = c0 c10 c21 c31 0 = c0 c2

f(1,1) = c0 c11 c21 c31 1 = c0 c1 c2 c3

Заметим, что наборы подставлены в равенство в естественном порядке, и система имеет треугольный вид: в первом уравнении обратились в ноль все слагаемые, следующие за c0, во втором – следующие за c1 и так далее. Значит, коэффициент c0 можно получить из первого уравнения и подставить его в остальные. Тогда c1 можно получить из второго уравнения, и так далее.

В общем случае для функции n аргументов получается система треугольного вида из 2n линейных уравнений с 2n неизвестными – коэффициентами полинома Жегалкина.

Пример. Найдем полином Жегалкина мажоритарной булевой функции, заданной таблицей истинности, последовательно вычисляя коэффициенты полинома и подставляя их в остальные уравнения.

Из первого уравнения следует, что c0=0. Из второго и третьего уравнений следует, что c1=0 и c2=0, значит, c1z и c2y тождественно равны нулю. Из четвертого уравнения получаем c3=1, значит, надо вычислять значения конъюнкции c3yz в остальных уравнениях. Аналогично получаем c4=0, c5=1, c6=1 и c7=0. Найден вектор коэффициентов полинома Жегалкина мажоритарной функции π=00010110, и сам полином P=yz xz xy, который, естественно, совпадает с полученными ранее. •

ТЕОРИЯ МНОЖЕСТВ

Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством.

Операции над множествами

 

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

 






Дистрибутивность

А ∩ (В ∪ С ) = (А ∩ В) ∪ (А ∩ В)

А  ∪ (В ∩ С) = (А ∪ В) ∩ (А ∪ С)

 

И еще всякие свойства на этой картинке… но 13 и 14 мы кажется не расматривали…

Кстати , если кто не в курсе, эта типа “с” означает “принадлежит”

 

  1. Законы де Моргана (законы двойственности).

1)

2)

Пикча… если надо

СВОЙСТВА ЛОГ ОПЕРАЦИЙ

Переместительный (коммутативный) закон:

· для логического умножения: A&B=B&A;

· для логического сложения: A∨B=B∨A.

Сочетательный (ассоциативный) закон:

· для логического умножения: (A&B)&C=A&(B&C);

· для логического сложения: (A∨B)∨C=A∨(B∨C).

 

Обрати внимание!

При одинаковых знаках операций скобки можно ставить произвольно или вообще опускать.

Распределительный (дистрибутивный) закон:

· для логического умножения: A^(B∨C)=(A^B)∨(A^C);

· для логического сложения: A∨(B^C)=(A∨B)^(A∨C).

 

Закон двойного отрицания:

НЕ(НЕ A)=A.

 

Обрати внимание!

Двойное отрицание исключает отрицание.

Закон исключённого третьего:

· для логического умножения: A^(НЕ A)=0;

· для логического сложения: A∨(НЕ A)=1.

 

Обрати внимание!

Из двух противоречивых высказываний об одном и том же предмете одно всегда истинно, а второе — ложно, третьего не дано.

Закон повторения:

· для логического умножения: A^A=A;

· для логического сложения: A∨A=A.

Законы операций с 0 и 1:

· для логического умножения: A^0=0; A^1=A;

· для логического сложения: A∨0=A; A∨1=1.

 

Законы общей инверсии:

· для логического умножения: НЕ(A^B) ('не' тут палка над всем выражением… ну вы поняли) = не A ∨ неB;

· для логического сложения: не(A∨B) = не(A^B).

 

Законы алгебры логики могут быть доказаны с помощью таблиц истинности. Докажем распределительный закон для логического сложения:
A∨(B^C)=(A∨B)^(A∨C).

 

A B C B^C A∨(B^C) A∨B A∨C (A∨B)^(A∨C)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

_________________________________________________________________ДНФ

Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ.[1] Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности.

Формулы в ДНФ:

Формулы не в ДНФ:

 

1) Избавиться от всех логических операций, содержащихся в формуле, заменив их основными: конъюнкцией, дизъюнкцией, отрицанием. Это можно сделать, используя равносильные формулы:

импликация

эквивалентность

2) Заменить знак отрицания, относящийся ко всему выражению, знаками отрицания, относящимися к отдельным переменным высказываниям на основании формул:

3) Избавиться от знаков двойного отрицания.

4) Применить, если нужно, к операциям конъюнкции и дизъюнкции свойства дистрибутивности и формулы поглощения.


Пример построения ДНФ

Приведем к ДНФ формулу :

Выразим логические операции → и ↓ через :

В полученной формуле перенесем отрицание к переменным и сократим двойные отрицания:

Используя закон дистрибутивности, приводим формулу к ДНФ:

КНФ

Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ

1) Избавиться от всех логических операций, содержащихся в формуле, заменив их основными: конъюнкцией, дизъюнкцией, отрицанием. Это можно сделать, используя равносильные формулы:

 

2) Заменить знак отрицания, относящийся ко всему выражению, знаками отрицания, относящимися к отдельным переменным высказываниям на основании формул:

 

3) Избавиться от знаков двойного отрицания.

 

4) Применить, если нужно, к операциям конъюнкции и дизъюнкции свойства дистрибутивности и формулы поглощения.

Пример построения КНФ

 

Приведем к КНФ формулу

Преобразуем формулу F к формуле не содержащей → :

 

 

В полученной формуле перенесем отрицание к переменным и сократим двойные отрицания:

 

 

По закону дистрибутивности получим КНФ:

 

 

Приемы и способы, применяемые при упрощении логических формул:

Пример 1.


(законы алгебры логики применяются в следующей последовательности: правило де Моргана, сочетательный закон, правило операций переменной с её инверсией и правило операций с константами);

Пример 2.

(применяется правило де Моргана, выносится за скобки общий множитель, используется правило операций переменной с её инверсией);

СДНФ И СКНФ

Для всякой логической формулы с помощью тождественных преобразований можно построить бесконечно много равносильных ей формул. В алгебре логики одной из основных задач является поиск канонических форм (т. е. формул, построенных по единому правилу, канону).

Если логическая функция выражена через дизъюнкцию, конъюнкцию и отрицание переменных, то такая форма представления называется нормальной.

Среди нормальных форм выделяются совершенные нормальные формы (такие формы, в которых функции записываются единственным образом).

ПЕРЕКЛЮЧАТЕЛБНЫЕ СХЕМЫ

Переключательная схема — это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Найдем функции проводимости F некоторых переключательных схем:

a)

Схема не содержит переключателей и проводит ток всегда, следовательно F=1;

б)

Схема содержит один постоянно разомкнутый контакт, следовательно F=0;

в)

Схема проводит ток, когда переключатель х замкнут, и не проводит, когда х разомкнут, следовательно, F(x) = x;

г)

Схема проводит ток, когда переключатель х разомкнут, и не проводит, когда х замкнут, следовательно, F(x) = ;

д)

Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x) = x . y;

е)

Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, F(x)=x v y;

ж)

Схема состоит из двух параллельных ветвей и описывается функцией .

Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале). Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные Ю.И. Журавлев, С.В. Яблонский и др.

При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.

СИНТЕЗ СХЕМЫ по заданным условиям ее работы сводится к следующим трём этапам:

1. составлению функции проводимости по таблице истинности, отражающей эти условия;

2. упрощению этой функции;

3. построению соответствующей схемы.

АНАЛИЗ СХЕМЫ сводится к

1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.

2. получению упрощённой формулы.

__________________________________________________________________________________________________________________________________ ЛОГИЧЕСКИЕ СХЕМЫ

огические схемы создаются для реализации в цифровых устройствах булевых функций (функций алгебры логики).

В цифровой схемотехнике цифровой сигнал - это сигнал, который может принимать два значения, рассматриваемые как логическая "1" и логический "0".

Логические схемы реализуются на логических элементах: "НЕ", "И", "ИЛИ", "И-НЕ", "ИЛИ-НЕ", "Исключающее ИЛИ" и "Эквивалентность". Первые три логических элемента позволяют реализовать любую, сколь угодно сложную логическую функцию в булевом базисе. Мы будем решать задачи на логические схемы, реализованные именно в булевом базисе.

Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах (для увеличения можно нажать на рисунок левой кнопкой мыши).







ФАКТОРИАЛ


Факториал числа — это произведение натуральныхчисел от1до самого числа (включая данное число).
Обозначается факториал восклицательным знаком «!».

Примеры:

  • 3! = 1 · 2 · 3 = 6
  • 6! = 1 · 2 · 3 · 4 · 5 · 6 = 720

Факториал определён только для натуральных чисел и нуля.

Факториал нуля и единицыэто 1.

  • 0! = 1
  • 1! = 1


ВЕРОЯТНОСТЬ

ОСНОВНЫЕ ПОНЯТИЯ ТЕОР ВЕРОЯТ:

1)СЛУЧАЙНОЕ СОБЫТИЕ

2)ИСПЫТАНИЕ

3)НЕСОВМЕСТНОЕ СОБЫТИЕ

4)ПОЛНАЯ ГРУППА СОБЫТИЙ

5)РАВНОВОЗМОЖНЫЕ СОБЫТИЯ

6)ЭЛЕМЕНТАРНЫЙ ИСХОД

7)ВЕРОЯТНОСТЬ

https://www.youtube.com/watch?v=6ZM4X7l3Ng0

вот по ссылке гуд объяснение за 8 мин… лень писать

Комбинаторика

КОМБИНАТОРИКА

Комбинаторика – раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.

 

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Решение

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

 

Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n1 способами, второе действие n2 способами, третье – n3 способами и так до k-го действия, которое можно выполнить nk способами, то все k действий вместе могут быть выполнены:

способами.

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Решение

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Решение

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m ( ) из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Решение.

В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

 

Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов, среди которых есть одинаковые?

Пример 6.

У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера– составить каталог. Сколько различных пятизначных номеров может составить мальчик?

Решение

Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр (1, 3, 7). Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:

.

Пример 7.

Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?

Решение

Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.

Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k < n), т. е. есть одинаковые предметы.

Пример 8.

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Решение

Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно

 



Таблица истинности сложения по модулю 2

{\displaystyle a}
x

{\displaystyle b}
y

{\displaystyle a\oplus b}
f

0 0 0
1 0 1
0 1 1
1 1 0

Свойства

a+0=a{\displaystyle a\oplus 0=a} (идемпотентность)

a+1= не а{\displaystyle a\oplus 1={\bar {a}}} (отрицание)

a+a=0{\displaystyle a\oplus a=0}

a+b = b+a{\displaystyle a\oplus b=b\oplus a} (коммутативность)

(a+b)+c = a+(b+c){\displaystyle (a\oplus b)\oplus c=a\oplus (b\oplus c)} (ассоциативность)

{\displaystyle (a\oplus b)\oplus b=a}(a+b)+b=a

Не а + б = а + не б = (а=б){\displaystyle {\bar {a}}\oplus b=a\oplus {\bar {b}}=(a\equiv b)} (сравнения по модулю)

+ в данном ^ контексте слож.по.мод2 если что

Рассмотрим алгоритмы построения полинома Жегалкина булевой функции, заданной различными способами, а именно: совершенной ДНФ, произвольной ДНФ, формулой и таблицей истинности.

Алгоритм построения полинома Жегалкина по СовДНФ (основан на доказательстве теоремы о существовании полинома Жегалкина).

Начало. Задана совершенная ДНФ функции f(x1, …, xn).

Шаг 1. Заменяем каждый символ дизъюнкции на символ дизюнкции с исключением.

Шаг 2. Заменяем каждую переменную с инверсией x равносильной формулой x 1.

Шаг 3. Раскрываем скобки.

Шаг 4. Вычеркиваем из формулы пары одинаковых слагаемых.

Конец. Получен полином Жегалкина функции f(x1, …, xn).

Пример. Найдем полином Жегалкина мажоритарной булевой функции по ее совершенной ДНФ.

Алгоритм построения полинома Жегалкина по ДНФ (основан на равносильности K1 K2= K1 K2 K1K2).

Начало. Задана произвольная ДНФ функции f(x1, …, xn).

Шаг 1. Разбиваем ДНФ на пары конъюнкций, предпочтительно ортогональных (если число конъюнкций нечетно, одна из них остается без пары).

Шаг 2. Заменяем дизъюнкцию каждой пары конъюнкций K1 K2 формулой K1 K2 K1K2 или формулой K1 K2, если K1 и K2 ортогональны.

Шаг 3. В полученной формуле находим очередную дизъюнкцию A1 A2и заменяем ее формулой A1 A2 A1A2. Повторяем шаг 3 до тех пор, пока это возможно.

Шаг 4. Заменяем каждую переменную с инверсией x равносильной формулой x 1.

Шаг 5. Раскрываем скобки.

Шаг 6. Вычеркиваем из формулы пары одинаковых слагаемых.

Конец. Получен полином Жегалкина функции f(x1, …, xn).

Пример. Найдем полином Жегалкина мажоритарной функции по ДНФ.

Отметим, что полиномы мажоритарной функции, полученные в двух последних примерах, совпадают с точностью до порядка конъюнкций, и это естественно (по теореме о единственности полинома Жегалкина).

 

Алгоритм построения полинома Жегалкина по таблице истинности (основан на методе неопределенных коэффициентов).

Продемонстрируем идею метода на примере произвольной булевой функции двух аргументов f(x,y). Представим ее полиномом Жегалкина в форме с коэффициентами

Pf = c0 c1y c2x c3x y.

Подставив в данное равенство наборы значений аргументов, получим систему из четырех линейных уравнений с четырьмя неизвестными коэффициентами: c0, c1 c2, c3.

f(0,0) = c0 c10 c20 c30 0 = c0

f(0,1) = c0 c11 c20 c30 1 = c0 c1

f(1,0) = c0 c10 c21 c31 0 = c0 c2

f(1,1) = c0 c11 c21 c31 1 = c0 c1 c2 c3

Заметим, что наборы подставлены в равенство в естественном порядке, и система имеет треугольный вид: в первом уравнении обратились в ноль все слагаемые, следующие за c0, во втором – следующие за c1 и так далее. Значит, коэффициент c0 можно получить из первого уравнения и подставить его в остальные. Тогда c1 можно получить из второго уравнения, и так далее.

В общем случае для функции n аргументов получается система треугольного вида из 2n линейных уравнений с 2n неизвестными – коэффициентами полинома Жегалкина.

Пример. Найдем полином Жегалкина мажоритарной булевой функции, заданной таблицей истинности, последовательно вычисляя коэффициенты полинома и подставляя их в остальные уравнения.

Из первого уравнения следует, что c0=0. Из второго и третьего уравнений следует, что c1=0 и c2=0, значит, c1z и c2y тождественно равны нулю. Из четвертого уравнения получаем c3=1, значит, надо вычислять значения конъюнкции c3yz в остальных уравнениях. Аналогично получаем c4=0, c5=1, c6=1 и c7=0. Найден вектор коэффициентов полинома Жегалкина мажоритарной функции π=00010110, и сам полином P=yz xz xy, который, естественно, совпадает с полученными ранее. •

ТЕОРИЯ МНОЖЕСТВ

Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством.

Операции над множествами

 

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

 






Свойства операций над множествами

1)коммутативность

A ∪ B = B ∪ A
A ∩ B = B ∩ A

 

2)ассоциативность

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)



Дистрибутивность

А ∩ (В ∪ С ) = (А ∩ В) ∪ (А ∩ В)

А  ∪ (В ∩ С) = (А ∪ В) ∩ (А ∪ С)

 

И еще всякие свойства на этой картинке… но 13 и 14 мы кажется не расматривали…

Кстати , если кто не в курсе, эта типа “с” означает “принадлежит”

 

  1. Законы де Моргана (законы двойственности).

1)

2)

Пикча… если надо


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 567; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.231 с.)
Главная | Случайная страница | Обратная связь