Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


DIMETHOXY-4-METHYLTHIOPHENETHYLAMINE



 

SYNTHESIS: A solution of 24.2 g N,N,N',N'-tetramethylethylenediamine and 27.6 g of 1,3-dimethoxybenzene was dissolved in 400 mL anhydrous hexane. This was stirred vigorously under a N2 atmosphere and cooled to 0 deg C with an external ice bath. There was added 125 mL of 2.0 M butyllithium in hexane. The stirred reaction mixture became yellow and sludgy, and was briefly warmed back to room temperature to allow easy stirring. After cooling again to 0 deg C, there was added 18.8 g of dimethyl disulfide which converted the viscous yellow phase to a loose white solid. Stirring was continued while the reaction mixture was brought up to room temperature, and then all was added to 2 L of dilute H2SO4. There was the immediate formation of a white cystalline solid which was removed by filtration, sucked relatively free of water, and recrystallized from 50 mL of boiling MeOH. There was thus obtained 18.9 g of 2,6-dimethoxythioanisole as white crystals with a mp of 81-82 deg C. Extraction of the aqueous filtrate with 2x50 mL CH2Cl2 and removal of the solvent under vacuum gave a residue which, when combined with the mother liquors from the MeOH crystallization, afforded an additional 3.3 g product with a mp 77-79 deg C.

 

To a stirred solution of 18.9 g of 2,6-dimethoxythioanisole in 200 mL CH2Cl2 there was added 16 g elemental bromine dissolved in 75 mL CH2Cl2. The initial dark red color gradually faded to a pale yellow color and there was a copious evolution of HBr. The solvent was removed under vacuum leaving 27.5 g of a pale yellow residual oil. This was distilled at 118-121 deg C at 0.25 mm/Hg to yield 3-bromo-2,6-dimethoxythioanisole as a white oil weighing 25.3 g. Crystallization from hexane provided white crystals with a mp of 30-30.5 deg C. Anal. (C9H11BrO2S) C,H.

 

To a solution of 19.3 g diisopropylamine in 150 mL anhydrous THF that was stirred under a N2 atmosphere and cooled to -10 deg C with an external ice/MeOH bath, there was added in sequence 83 mL of 1.6 M butyllithium in hexane, 4.4 mL of dry CH3CN, and 11.6 g of 3-bromo-2,6-dimethoxythioanisole (which had been dissolved in a little anhydrous THF). The turbid reaction mixture gradually developed color, initially yellow and progressively becoming orange and finally a deep red brown. Stirring was maintained for a total of 20 min, and then the reaction mixture was poured into 1 L H2O that containing 10 mL concentrated H2SO4. This was extracted with 3x75 mL CH2Cl2, these extracts pooled, washed with dilute H2SO4 followed by saturated brine, and the solvent was removed under vacuum yielding 8.7 g of a viscous oil as a residue. This was distilled at 0.11 mm/Hg yielded two fractions. The first boiled at 115-125 deg C and weighed 3.8 g. This material set to an oily crystalline mass which was filtered, washed with cold MeOH and then recrystallized from MeOH. The white solids had a mp of 60-63 deg C and were not the desired product. This material has not yet been identified. The second fraction came over at 150-180 deg C, weighed 1.8 g and spontaneously crystallized. It was triturated under cold MeOH and filtered yielding, after air drying, 1.1 g 3,5-dimethoxy-4- methylthiophenylacetonitrile, which had a mp of 95-96.5 deg C. Anal. (C11H13NO2S) C,H.

 

A suspension of 1.0 g LAH in 40 mL anhydrous THF under N2 was cooled to 0 deg C and vigorously stirred. There was added, dropwise, 0.7 mL 100% H2SO4, followed by 1.2 g 3,5-dimethoxy-4-methylthiophenylacetonitrile in 10 mL anhydrous THF. The reaction mixture was stirred at 0 deg C for a few min, then brought to room temperature for 1 h, and finally to a reflux for 30 min on the steam bath. After cooling to room temperature, there was added 1 mL H2O in 5 mL THF to destroy the excess hydride, followed by 3 mL of 15% NaOH to bring the reaction to a basic pH, and finally 2 mL H2O which converted the aluminum oxide to a loose, white, filterable consistency. This was removed by filtration, and washed with THF. The filtrate and washes were stripped of solvent under vacuum, the residue was dissolved in 200 mL CH2Cl2, and this was extracted with 3x100 mL diute H2SO4. These extracts were pooled, washed with CH2Cl2, made basic with 25% NaOH, and extracted with 3x100 mL CH2Cl2. After combining, the solvent was removed under vacuum providing 1.2 g of a colorless oil as a residue. This was distilled at 122-132 deg C at 0.05 mm/Hg to give a colorless oil. This was dissolved in 8 mL of IPA, neutralized with concentrated HCl and, with continuous stirring, diluted with 100 mL anhydrous Et2O. The product was removed by filtration, washed with Et2O, and air dried to give 0.95 g. 3,5-dimethoxy-4-methylthiophenethylamine hydrochloride (4-TM) as spectacular white crystals with a mp of 193-194 deg C. Anal. (C11H18ClNO2S) C,H.

 

DOSAGE: 20 - 40 mg.

 

DURATION: 10 - 15 h.

 

QUANTITATIVE COMMENTS: (with 25 mg) I was first aware of any effects as I was sitting in back of the house on a big fluffy pillow. The sun was warm and the grass tall and green, but I felt strange inside. There was distinct uterine cramping, and I could not find a comfortable position for sitting. The others had gone out to the garden leaving me here. It seemed that walking might relieve the physical discomfort, so I went to find them. Walking was easy, but I was a little light-headed and I had to watch my steps with care. They were not there (we had passed on opposite sides of the house) and I returned in some haste to my warm nest behind the house to find my pillow gone. A strange detail, but it perhaps gave me the flavor for my day. The pillow was for me. It was gone. My place was gone. Therefore I am gone. I am dead and yet I can see and think. The small touch of panic at finding myself dead dispelled any internal concerns and I ran inside to find the others; they had brought my pillow in. I was alive again, but the entire day balanced between the alive unreality and the illusion that I was something removed and merely watching the surrounding alive unreality. Everything that happened was completely unlikely.

 

Like the soup scene. We decided that some hot soup would be welcome, and so R. brought out three cans of Campbell soup for the three of us. But one was cream mushroom, one asparagus, and one tomato. The discussion as to how to use two cans only, which two, without mixing, and even how to decide to decide was totally beyond any of us. The situation was hopelessly unresolvable, hilariously funny, and distinctly schizophrenic.

 

Or like the kite scene. We were returning from a short walk to the back of the property, and I spotted a red thing in the parking area. It had not been there before. None of us could identify it from this distance, and we speculated wildly as to what it was, as we came closer. And at the last approach, we found that there was loose string everywhere about the driveway, all part of a downed kite. The red object had apparently fallen from the sky, right here in front of the garage. There had been no sounds of voices of kite-flyers, and there was no one to be seen in any direction. And then one of us spotted a sheet of paper, torn to the center where there was a small hole, and it was flattened up against the kite. There was a message. Apparently whoever had been flying it had put a message on the string, and let the wind take it up to the kite itself. I reached for the sheet of paper, and removed it. Nothing on either side. The message was that there was no message. Exactly out of Marshall McLuhan. Completely appropriate for this particular day.

 

That evening we were to be picked up by my friends for dinner. Choosing what to wear, how to dress myself, how to adjust my persona to fit other people, all this was chaotic. Somehow the dinner succeeded, but I was able to flip in and out of the immediate company easily, but not completely voluntarily. Sleep was com-fortable that night, and I feel that the entire day had been very intense, not too much fun, but somehow quite rewarding.

 

(with 30 mg) At the one and a half hour point, I was reminded more than anything of LSD, with a distinct feeling of standing just a few feet to the right of ordinary reality. There has been a mild tremor ever since the first effects were evident, but it doesn't bother me except to make my handwriting uncertain. I would not want to double this level. Suddenly the concept of my 5:30's swept over me. I had a penetrating view of myself as a person who had become invested in a pattern of behavior that I had succumbed to, to come home and complete my day with a transition from the work-world to the home-world, by changing the inside clock at 5:30. My wife had been my 5:30 for nearly 30 years and this had been my tacit agreement with her. Never questioned, never challenged, and certainly never violated. And with her death, I have found myself imposing this same 5:30-ness on myself, as some form of an emasculating pattern that is comfortable and stable. No, it is not comfortable, it is simply the course of the least thought and the least disruption. If I were to meet someone else, would I have such a negative image of myself that I would expect her to become my 5:30 so as not to have to disrupt these tired and comfortable patterns? That would be completely unfair to this other person. And I can see where it is completely destructive to me. No new person should ever have to play my wife's old role. I need never again play my old role. And I won't.

 

(with 30 mg) At 2:20 PM I ingested 30 mg of TM. It had a mildly alkaloid taste. Since the afternoon was warm, I took a two mile walk with the dog, and with my two companions K.T. and T.T., both also with 30 mg. We talked without any difficulty even after the onset of the first signs of effect. The major emotional and physical effects came on very gradually and quite pleasantly as we sat in the patio. But soon we all grew chilled, and put on more clothing. Nothing really helped the inward chill, and we were to discover that it stayed with us throughout the ex-perience. At 3:30 we went inside where the room temperature was set at 70 degrees, and we all lay down. I launched into an engrossing, somewhat chaotic and erotic reverie, that followed no linear progression, but which lasted perhaps an hour. The ease of talking surprised me; the content was cogent and I felt myself to be articulate. It dawned on me after about two hours had gone by, that the height of the experiment had already passed without any real exhilaration on my part. But my companions suggested that my expectations from the past had been misleading me and, as time went on, they proved to be correct. The clarity and the continued ability to talk, especially with K.T. on a personally difficult topic, were for me the particular genius of this material. When I went inward, which I could do without effort, the sensations were neutral in affect but restful in some way. But coming out was entirely lucid and pleasant. I soon found that I preferred this. I enjoyed a light supper at 8:30 and found the dropoff gentle, and the conversation most amiable until we separated at 1:00 AM. Sleep did not come until 3:00 AM and then only after 10 mg Librium to quell the active mental processes. The next day I awoke around 8:30 AM feeling languid but cheerful.

 

(with 40 mg) For quite a while there was some physical concern. Not actual nausea but a generalized uneasiness, with a distinct body tremor. There was little urine produced (500 mL in 18 hours), and I felt the need to search out fluids. There was mild intestinal cramping. I found that my thoughts were able to go in several directions at once, but since they stayed nowhere long enough to structure anything, this was more annoying than constructive. I saw this as a reality shell about me like a Möbius strip, continuous, yet with no consistent side being presented. I was reminded of a similar place with DOB, some few years ago. While lying down with eyes closed, I found the imagery to be very impressive, but my thought processes were quite convoluted and disjointed. Some were most interesting, and some were ugly. I cannot see this as a party drug.

 

EXTENSIONS AND COMMENTARY: The dosage range has been broadened to include the 20 milligram level, in that several subjects found that even with that small amount there was difficulty in walking and in keeping one's equilibrium. Walking was described as a floating procedure, and one could tilt to one side or the other if care was not taken. Anorexia was occasionally noted, and most people commented on some degree of anesthesia to touch.

 

All in all, this drug evoked a mixed bag of responses. The most startling and unexpected property was the dramatic increase in potency over the parent prototype, mescaline. The substitution of a sulfur atom for an oxygen atom increased the power of the drug some ten-fold, without any apparent decrease in complexity of action. As there were many materials that were outgrowths of mescaline with the studies of ethyl this and diethyl that, each and all of these would be interesting candidates for synthesis with this or that oxygen atom replaced with sulfur. Most of these have been made, and many of them have proven to be interesting.

 

What is meaning of the phrase, "sulfur-for-oxygen replacement?" Let me try to explain it for non-chemists.

 

One of the most exciting bits of architecture in science is the Periodic Table.  The principles of electrons and orbitals and different counts of protons in a nucleus gets to be a complex story to try to explain the grid-like structure of the arrangements of atoms. It is easier to simply give the music. And this melody goes: As you look across a row, elements are simple in their binding arrangements on the left, become more complex towards the center where they kind of change polarity, and then get progressively simple again but with the opposite charge as you approach the right-hand side.

 

And when you look at a column from top to bottom, the bonding complexity stays pretty much the same but the atom gets more and more massive as you go down the column.

 

The combinations of atoms from the Periodic Table, by and large, is the province of the inorganic chemist. Take one of this, and two of that, and the combination is called a salt, or a complex, or an adduct, and probably has interesting colors, and may even be found in nature as part of a rock somewhere, or coming out of the vent of a volcano.

 

But if one were to look at just four elements, three in the middle right of the first row, namely carbon, nitrogen and oxygen, and the one up there at the top and the lightest of all, hydrogen, you would find quite a different story. These can be combined in an infinity of ways since there can be dozens of atoms hooked to one-another; this is the territory of the organic chemist, and this is the chemistry of life. With a few exceptions, every molecule within the body, and the food that maintains the body, and the drugs that affect the body, are made up of a bunch of carbons, and an occasional oxygen or two, usually a nitrogen somewhere, and all the remaining loose ends satisfied with hydrogen atoms.

 

Almost every drug that is to be found in this book is nothing more than a different arrangement of atoms of these four elements.

 

This compound, thiomescaline, is a byway that takes advantage of one of those vertical columns. Directly below the element oxygen, there is found sulfur, which has much the same binding complexity, but is twice as massive. The prototype of all the phenethylamine drugs being discussed in this book is mescaline, a very simple compound containing these basic four elements of life and pharmacology; it contains eleven carbon atoms, three oxygen atoms, one nitrogen atom, and there are a total of seventeen hydrogen atoms required to balance the books. One of the oxygen atoms holds a central position, and the other two are reflections of one another and cannot be distinguished chemically. The structure of thiomescaline is generated by plucking out that central oxygen atom of mescaline, and putting a sulfur atom back in its place. The definition of the term "thio" is quite simple Q it means a sulfur-in-place-of-an-oxygen, with everything else left alone. It is a little awe-inspiring to think that every oxy anything can have a thio something as a spatially similar analogue. And there are a lot of oxy things in the body and in the medicine cabinet. A number of them are discussed in this book.     

 

 

 

#157 TMA; 3,4,5-TRIMETHOXYAMPHETAMINE

 

SYNTHESIS: To a solution of 39.2 g 3,4,5-trimethoxybenzaldehyde in 30 mL warm EtOH there was added 15.7 g nitroethane followed by 1.5 mL n-butylamine. The reaction mixture was allowed to stand at 40 deg C for 7 days. With cooling and scratching, fine yellow needles were obtained which, after removal by filtration and air drying, weighed 48 g. Recrystallization from EtOH gave 2-nitro-1-(3,4,5-trimethoxyphenyl)propene as yellow crystals with a mp of 94-95 deg C. Anal. (C12H15NO5) C,H,N. Alternatively, a solution of 20 g of the aldehyde in 75 mL nitroethane was treated with 4 g anhydrous ammonium acetate and heated on the steam bath until a deep red color had been generated. Removal of the excess solvent/reagent under vacuum gave a red oil which was dissolved in an equal volume of boiling MeOH. On cooling, yellow crystals of the nitropropene separated. Recrystallization from MeOH gave, after air drying to constant weight, 13.0 g with the same mp.

 

Under an inert atmosphere, 38 g LAH was wetted with 100 mL anhydrous Et2O, and then suspended in 1 L dry THF. This was brought up to a gentle reflux, and there was added, slowly, a solution of 43.7 g 2-nitro-1-(3,4,5-trimethoxyphenyl)propene in 160 mL THF. Refluxing was continued for 36 h, and then the reaction mixture was cooled with an external ice bath. The excess hydride was destroyed by the cautious addition of 38 mL H2O, and this was followed by 38 mL 15% NaOH, and finally another 114 mL H2O. The inorganic salts which should have ended up as a loose, granular, easily filterable mass, looked rather like library paste, but they were filtered nonetheless. Washing with THF was attempted, but it was not efficient. The combined filtrate and washes were stripped of solvent under vacuum giving 31.5 g of the crude base as an amber oil. This was dissolved in 140 mL IPA, neutralized with concentrated HCl (15 mL was required), and diluted with 650 mL anhydrous Et2O. There was an initial oily phase which on continued stirring changed to pale pink solids. These were finely ground under CH3CN to give 15.2 g of 3,4,5-trimethoxyamphetamine hydrochloride (TMA) as white crystals that melted at 195-211 deg C. All aluminum salts from everywhere were dissolved in dilute HCl, and 1 Kg of potassium sodium tartrate was added. There as added 25% NaOH allowed the pH to bring the pH to >9 without the precipitation of basic alumina. Extraction of this phase with CH2Cl2 was followed by removal of the solvent and salt formation as described above, allowed the isolation of an additional 6.4 g TMA. The product prepared in this manner contains some 10-15% 3,5-dimethoxy-4-hydroxyamphetamine as an impurity. A solution of 20 g of the TMA made in this manner in 200 mL 5% NaOH was extracted with 2x200 mL CH2Cl2. The pooled extracts were washed with 4x100 mL 5% NaOH, and the aqueous washes were pooled with the original base phase. The organic phase was stripped of its CH2Cl2 under vacuum to give an oil that was dissolved in 40 mL IPA, neutralized with concentrated HCl, and diluted with 400 mL anhydrous Et2O. There was the immediate formation of spectacular white crystals of pure 3,4,5-trimethoxyamphetamine hydrochloride, weighing 15.4 g and having a mp of 220-221 deg C. The aqueous phase was brought to neutrality, treated with 10 g potassium di-hydrogen phosphate, brought to pH 9.0 with the careful addition of NaOH, and extracted with 5x100 mL CH2Cl2. Evaporation of the solvent under vacuum gave an oil that spontaneously crystallized. This product, 3,5-dimethoxy-4-hydroxyamphetamine could be further purified by sublimation at 130 deg C at 0.2 mm/Hg. It was a white crystalline solid that slowly discolored in the air. The literature describes a picrate salt with a mp of 225 deg C from EtOH.

 

DOSAGE: 100 - 250 mg.

 

DURATION: 6 - 8 h.

 

QUALITATIVE COMMENTS: (with 135 mg) I had no nausea, although I always vomit with mescaline. Somehow my personality was divided and exposed, and this allowed me to understand my psychic structure more clearly. But maybe others could look in there, too. The psychiatric use of this drug would be interesting to pursue. It is not completely pleasant, maybe because of this personal intimacy.

 

(with 140 mg) There were not the color changes of mescaline there, but certainly a good humor and an over-appreciation of jokes. The images behind the eyes were remarkable and tied in with the music, and I became annoyed at other people's conversations that got in the way. I was out of it in eight hours. I would equate this to 300 or 350 milligrams of mescaline and I rather think that I would prefer the latter.

 

(with 225 mg) There was quite a bit of nausea in the first hour. Then I found myself becoming emotionally quite volatile, sometimes gentle and peaceful, sometimes irritable and pugnacious. It was a day to be connected in one way or another with music. I was reading Bernstein's 'Joy of Music' and every phrase was audible to me. On the radio, Rachmaninoff's 2nd piano concerto on the radio put me in an eyes-closed foetal position and I was totally involved with the structure of the music. I was suspended, inverted, held by fine filigreed strands of the music which had been woven from the arpeggios and knotted with the chords. The commercials that followed were irritating, and the next piece, Slaughter on Fifth Avenue, made me quite violent.  I was told that I had a, 'Don't cross me if you know what is good for you,' look to me. I easily crushed a rose, although it had been a thing of beauty.

 

EXTENSIONS AND COMMENTARY: TMA was the very first totally synthetic psychedelic phenethylamine that was found to be active in man, for which there had been any attempt to describe such drug effects in any detail. This was the report of research done in Canada, and it appeared in 1955, six years before my own report on the material. There was an earlier report on TMPEA which is mentioned in the appropriate recipe, but there were few details given. Also there had been interest in reports that adrenalin that had become old and discolored seemed to elicit central effects in man. The oxidation products were identified as the deeply colored indolic compound adrenochrome and the colorless analogue adrenolutin. The controversy that these reports created just sort of died away, and the adrenochrome family has never been accepted as being psychedelic. No one in the scientific community today is looking in and about the area, and at present this is considered as an interesting historical footnote. But, in any case, they are not phenethylamines and so not part of this book.

 

The Canadian studies with TMA involved the use of a stroboscope as a tool for the induction of visual phenomena. These experiments used levels in the 50-150 milligram range, and generally employed pre-treatment with Dramamine for the successful prevention of nausea. There was reported giddiness and light-headedness, and some remarkable flash-induced visualizations. With higher levels, the visual syntheses are present without external stimulation. But there is a thread of negativity that seems to pervade the experience at these higher levels, and the appearance of a publication that emphasized the possible antisocial nature to TMA seemed to discourage further medical exploration. Military interest was maintained however, apparently, as TMA became a part of the chemical warfare studies where it was referred to with the code name EA-1319. It had been used in human trials with psychiatric patients, but no details of these experiments have been published.

 

The presence of a potentially active impurity in TMA deserves some comment. In the Canadian work, the material used was described as melting at 219-220 deg C, which is the property given for the impurity-free material above. If this was the actual material used in those studies, this impurity (3,5-dimethoxy-4-hydroxyamphetamine) was probably not present. The Army studies use a material of unreported melting point. In my own studies, the lower melting product was used. There is an intriguing and unanswered question: what contribution did this phenolic component make to the nature of the observed effects of TMA? Assays on the isolated contaminant could answer that, but they have not yet been made.

 

There is an old saying that has gotten many people into trouble: "If one is good, then two is better." And if a statement of the measure of worth of a compound can be made from its potency, then TMA is a step in the right direction. And this was a chemically simple direction to follow further. Looking at mescaline as a compound with no carbons on its side-chain, and TMA as a mescaline molecule with one carbon on its side chain, then what about a compound with two carbons there, or three, or nine carbons?

 

Using this pattern of naming, TMA can be seen as alpha-methylmescaline, or AMM. And the two carbon homologue would be alpha-ethyl mescaline, or AEM. Its proper name is 2-amino-1-(3,4,5-trimethoxyphenyl)butane. It and its several higher homologues are discussed in a separate recipe entry called AEM (#1).

 

A final comment. But maybe a long one! Elsewhere, I have made comparisons between myristicin and MMDA, and between safrole and MDA. And here there is a similar parallel between elemicin and TMA. What are these relationships between the essential oils and the amphetamines? In a word, there are some ten essential oils that have a three carbon chain, and each lacks only a molecule of ammonia to become an amphetamine. So, maybe these essential oils, or "almost" amphetamines, can serve as an index for the corresponding real amphetamine counterparts. I had originally called this family the "natural" amphetamines, but my son suggested calling them the "essential" amphetamines, and I like that. At the time that I had synthesized TMA, back there in the '50s, I had the impulse to explore this body of Essential Amphetamines. As the old folk-wisdom says: "Nature is trying to tell us something."

 

One of the banes of the archivist is having to choose one pattern of organization over another. The book store owned by a language scholar will have the German poets and playwrights and novelists here, and the French ones over there. Next door, the book store is run by a letters scholar, and the poetry of the world is here, and the plays of the world are there, regardless of the language of origin. The same obtains with spices, and essential oils, and amphetamines. The spice cabinet is a rich source of chemical treasures, each source plant containing a host of com-pounds, some of which are true essential oils. And the next spice from the next plant has some of the same components and some new ones. Does one organize by plant (spice or herb) or by essential oil (amphetamine)? Let's do it by the ring substitution pattern of the amphetamine, and gather the spices and oils as a secondary collection.

 

(1) The 4-methoxy pattern. The pivotal essential oil is 4-allylanisole, or methyl chavicol, or estragole (called esdragol in the old literature). This allyl compound is found in turpentine, anise, fennel, bay, tarragon, and basil. Its smell is light, and reminiscent of fennel. The propenyl analogue is called anethole, or anise camphor, and it is found in both anise and camphor. It is a waxy solid, and has a very intense smell of anise or fennel. At low concentrations, it is sweet, as in magnolia blossoms, where it is also found. The drinks that turn cloudy with water dilution (Pernod-like liqueurs, and ouzo and roki), are heavy with it, since it was the natural flavoring in the original absinthe. That drink was very popular in the last century, as an intoxicant which produced an altered state of consciousness beyond that which could be ascribed to alcohol alone. It contained wormwood, which proved to be neurologically damaging. The flavorings, such as anethole, are still big things in synthetic liqueurs such as vermouth. Old anethole, when exposed to air and light, gets thick and sticky and yellowish, and becomes quite disagreeable to taste. Maybe it is polymerizing, or maybe oxidizing to stuff that dimerizes. Whatever. These changes are why old spices in the cabinet are best discarded. And adding ammonia to any of these natural product oils produces, in principle, 4-methoxyamphetamine, 4-MA.

 

(2) The 3,4-dimethoxy pattern. The main actor here is methyleugenol, or 4-allyl-1,2-dimethoxybenzene. This is located in almost every item in the spice cabinet. It is in citronella, bay (which is laurel, which is myrtle), pimiento, allspice, pepper, tree-tea oil, and on and on. It has a faint smell of cloves, and when dilute is immediately mistaken for carnations. The propenyl analogue is, not unreasonably, methylisoeugenol, a bit more scarce, and seems to always be that little minor peak in any essential oil analysis. The compounds missing that methyl group on the 4-oxygen are famous. The allyl material is eugenol, 4-allylguaiacol, and it is in cinnamon, nutmeg, cloves, sassafras and myrrh. You taste it and it burns. You smell it and think immediately of cloves. And its property as an anesthetic, in the form of a clove, is well known in the folk-treatment of toothaches. Actually, flowers of clove (the gillyflower, like the carnation) are the small, pointy things that decorate baked hams and, when stuck into apples, make pomander balls. This anesthetic property has recently led to a drug abuse fad, called clove cigarettes. Very strong, very flavorful, and very corrosive things from Southeast Asia. The eugenol that is present numbs the throat, and allows many strong cigarettes to be smoked without pain. The propenyl analogue is isoeugenol, with a smell that is subtle but very long lasting, used more in soaps and perfumes than in foods. The amine addition to the methyleugenol world produces 3,4-dimethoxyamphetamine, or 3,4-DMA. The isomer with the other methyl group missing is chavibetol (3-hydroxy-4-methoxyallylbenzene) and is found in the pepper leaf that is used with betel nut. A couple of positional rearrangement isomers of methyleugenol are known in the plant world. The 2,4-isomer is called osmorrhizole, and the conjugated form is isoosmorrhizole or nothosmyrnol; both are found in carrot-like vegetables. They, with ammonia, would give 2,4-DMA. And the 3,5-dimethoxyallylbenzene isomer from artemisia (a pungent herb commonly called mugwort) and from sage, would give rise to 3,5-DMA. This is an unexplored isomer which would be both an antidote for opium as well as a stimulant, if the classical reputation of mugwort is transferred to the amphetamine.

 

(3) The 3,4-methylenedioxy pattern. One of the most famous essential oils is safrole, or 4-allyl-1,2-methylenedioxybenzene. This is the mainstay of sassafras oil, and it and its conjugated isomer isosafrole have a smell that is immediately familiar: root beer! These are among the most widely distributed essential oils, being present in most of the spices, including the heavies such as cinnamon and nutmeg. I am not aware of the 2,3-isomer ever having been found in nature. Adding ammonia to either would give MDA. (4) The 3-methoxy-4,5-methylenedioxy pattern. The parent compound is myristicin, 5-allyl-1-methoxy-2,3-methylenedioxybenzene, and the source of this is nutmeg (or the botanically parallel material, mace). The nutmeg is the seed of the tree Myristica fragrans and mace is the fibrous covering of the seed. The two spices are virtually identical as to their chemical composition. Myristicin and the conjugated isomer isomyristicin are also found in parsley oil, and in dill. This was the oil that was actually shown to be converted to MMDA by the addition of ammonia by passage through an in vitro liver preparation. So here is the major justification for the equation between the essential oils and the Essential Amphetamines. Care must be taken to make an exact distinction between myristicin (this essential oil) and myristin (the fat) which is really trimyristin or glyceryl trimyristate from nutmeg and coconut. This is the fat from myristic acid, the C-14 fatty acid, and these two similar names are often interchanged even in the scientific literature.

 

(5) The 2-methoxy-3,4-methylenedioxy pattern. This is the second of the three natural methoxy methylenedioxy orientations. Croweacin is 2-methoxy-3,4-methylenedioxyallylbenzene, and it takes its name from the binomial for the plant Eriostemon crowei from the worlds of rue and the citrus plants. It corresponds to the essential amphetamine MMDA-3a. This oil is found in plants of the Family Rutaceae. My memories of this area of botany are of Ruta graveolens, the common rue, whose small leaves smelled to me, for all the world, like cat urine. This plant has always fascinated me because of a most remarkable recipe that I was given by a very, very conservative fellow-club member, one evening, after rehearsal. He told me of a formula that had provided him with the most complete relief from arthritic pain he had ever known. It was a native decoction he had learned of many years eariler, when he was traveling in Mexico. One took equal quantities of three plants, Ruta graveolens (or our common rue), Rosmarinus officinalis (better known as rosemary), and Cannabis sativa (which is recognized in many households simply as marijuana). Three plants all known in folklore, rue as a symbol for repentance, rosemary as a symbol of remembrance, and pot, well, I guess it is a symbol of a lot of things to a lot of people. Anyway, equal quantities of these three plants are allowed to soak in a large quantity of rubbing alcohol for a few weeks. Then the alcoholic extracts are clarified, and allowed to evaporate in the open air to a thick sludge. This then was rubbed on the skin, where the arthritis was troublesome, and always rubbed in the direction of the extremity. It was not into, but onto the body that it was applied. All this from a very conservative Republican friend!

 

The methoxy-methylenedioxy pattern is also found in nature with the 2,4,5-orientation pattern. The allyl-2,4,5-isomer is called asaricin. It, and its propenyl-isomer, carpacin, are from the Carpano tree which grows in the Solomon Islands. All these plants are used in folk medicine. These two systems, the 2,3,4- and the 2,4,5-orientations, potentially give rise, with ammonia, to MMDA-3a and MMDA-2.

 

(6) The 3,4,5-trimethoxy pattern. Elemicin is the well studied essential oil, 5-allyl-1,2,3-trimethoxybenzene, primarily from the oil of elemi. It is, like myristicin, a component of the Oil of Nutmeg, but it is also found in several of the Oils of Camphor, and in the resin of the Pili in the Philippines. This tree is the source of the Oil of Elemi. I had found a trace component in nutmeg many years ago that proved to be 5-methoxyeugenol, or elemicin without the 4-methyl group; it is also present in the magnolia plant. The aldehyde that corresponds to this is syringaldehyde, and its prefix has been spun into many natural products. Any natural product with a syring somewhere in it has a hydroxy between two methoxys. The amphetamine base from elemicin or isoelemicin would be TMA, the topic of this very recipe.

 

(7) The 2,4,5-trimethoxy pattern. There is an essential oil called asarone that is 2,4,5-trimethoxy-1-propenylbenzene. It is the trans- or alpha-isomer, and the cis-isomer is known as beta-asarone. It is the isomerization analogue of the much more rare 1-allyl-2,4,5-trimethoxybenzene, gamma-asarone, or euasarone, or sekishone. Asarone is the major component of Oil of Calamus obtained from the rhizomes of Acorus calamus, the common Sweet Flag that grows wild on the edges of swamps throughout North America, Europe, and Asia. It has been used as a flavoring of liqueurs and, as almost every other plant known to man, has been used as a medicine. In fact, in Manitoba this plant was called Rat-root by the Cree Indians in the Lake Winnipeg area known as New Iceland, and Indian-root by the Icelandic pioneers. It was used externally for the treatment of wounds, and internally for most illnesses. There apparently is no report of central effects. The corresponding propanone, acoramone (or 2,4,5-trimethoxyphenylacetone), is also present in Oil of Calamus. The styrene that corresponds to asarone is found in a number of plants, and is surprisingly toxic to brine shrimp. The older literature describes an allyl-trimethoxy benzene called calamol, but it has never been pinned down as to structure. The isolation of gamma-asarone or euasarone from Oil of Xixin (from wild ginger) has given rise to a potential problem of nomenclature. One of the Genus names associated with wild ginger is Asiasarum which looks very much like the name asarone, which comes from the Genus Acorus. And a second Genus of medical plants also called wild ginger is simply called Asarum. There is an Asarum forbesi from central China, and it is known to give a pleasant smell to the body. And there is Asarum seiboldi which is largely from Korea and Manchuria. It has many medical uses, including the treatment of deafness, epilepsy, and rheumatism. The amphetamine that would arise from this natural treasure chest is TMA-2.

 

(8) The 2,5-dimethoxy-3,4-methylenedioxy pattern. The parent allyl benzene is apiole (with a final "e") or parsley camphor, and it is the major component of parsley seed oil. Its conjugated isomer is called isoapiole, and they are valuable as the chemical precurors to the amination product, DMMDA. Whereas both of these essential oils are white solids, there is a green oily liquid that had been broadly used years ago in medicine, called green, or liquid apiol (without the final "e"). It comes from the seeds of parsley by ether extraction, and when the chlorophyll has been removed, it is known as yellow apiol. With the fats removed by saponification and distillation, the old term for the medicine was apiolin. I would assume that any of these would give rise to white, crystalline apiole on careful distillation, but I have never tried to do it. The commercial Oil of Parsley is so readily available.

 

(9) The 2,3-dimethoxy-4,5-methylenedioxy pattern. The second of the three tetraoxygenated essential oils is 1-allyl-2,3-dimethoxy-4,5-methylenedioxybenzene, commonly called dillapiole and it comes, not surprisingly, from the oils of any of the several dill plants around the world. It is a thick, almost colorless liquid, but its isomerization product, isodillapiole, is a white crystalline product which melts sharply. This, by the theoretical addition of ammonia, gives DMMDA-2.

 

(10) The tetramethoxy pattern. The third and last of the tetra-oxygenated essential oils, is 1-allyl-2,3,4,5-tetramethoxybenzene. This is present as a minor component in the oil of parsley, but it is much more easily obtained by synthesis. It, and its iso-compound, and the amination product, are discussed under the last of theTen Essential Amphetamines, TA.

 

One must remember that the term "essential" has nothing to do with the meaning of needed, or required. The word's origin is essence, something with an odor or smell. Thus, the essential oils are those oils that have a fragrance, and the Essential Amphetamines are those compounds that can, in principle, be made from them by the addition of ammonia in the body.

 

There were a few interesting experimental trials that were based on these natural oils. Methoxyeugenol was assayed up to a 10 milligram level, and asarone at up to a 70 milligram level, and neither had any effects at all. And, in an attempt to challenge the "oil-to-amphetamine" concept, I made up a mixture of 1 part MDA, 2 parts TMA and 5 parts MMDA. A total of 100 milligrams of this combination (which I had named the "Pseunut Cocktail" for pseudo-nutmeg) should be equivalent to the safrole, elemicin and myristicin that would be in 5 grams of nutmeg. And 100 milligrams indeed produced quite a sparkle and considerable eye-dilation. But then, I have never taken 5 grams of nutmeg, so I cannot make any comparisons.      

 

 

 

#158 TMA-2; 2,4,5-TRIMETHOXYAMPHETAMINE

 

SYNTHESIS: To a solution of 50 g 2,4,5-trimethoxybenzaldehyde in 175 mL nitroethane there was added 10 g anhydrous ammonium acetate and the mixture was heated on the steam bath for 2 h. The excess nitroethane was removed under vacuum, and the deep orange oily residue was drained out into a beaker, and the flask washed with 3x60 mL boiling MeOH. On stirring the combined decantation and washings, there was a spontaneous formation of crystals. After cooling, these were removed by filtration, washed sparing with MeOH, and air dried to constant weight to yield 35.1 g of 2-nitro-1-(2,4,5-trimethoxyphenyl)propene as yellow crystals with a mp of 98-99 deg C. Recrystallization from MeOH increased the mp to 101-102 deg C.

 

A suspension of 31.6 g powdered LAH in 1 L anhydrous THF containing a little anhydrous Et2O was brought to a gentle reflux, and then there was added a solution of 40.0 g of 2-nitro-1-(2,4,5-trimethoxyphenyl)propene in 200 mL anhydrous THF over the course of 4 h. The mixture was held at reflux temperature for 24 h, cooled to 0 deg C with external ice, and the excess hydride destroyed by the addition, in sequence, of 32 mL H2O (which had been diluted with a little THF), 32 mL 15% NaOH, and finally with 96 mL H2O. The white inorganic solids were removed by filtration, and the filter cake was washed with THF. The combined filtrate and washings were stripped of solvent under vacuum to give 48 g of an impure amber oil. This was dissolved in 180 mL IPA, neutralized with 30 mL concentrated HCl, and the mixture diluted with 1500 mL anhydrous Et2O. After a short induction period, an oily precipitate separated, which on stirring changed into a loose crystalline phase. This was removed by filtration, washed with Et2O, and air dried to yield 29.0 g of 2,4,5-trimethoxyamphetamine hydrochloride (TMA-2) as fine white crystals with a mp of 188.5-189.5 deg C. Anal. (C12H20ClNO3) C,H,N. A 4.0 g sample of the free base was dissolved in 15 mL pyridine, treated with 2.5 mL acetic anhydride, heated on the steam bath for 20 min, added to 400 mL H2O, acidified with HCl, and extracted with 3x75 mL CH2Cl2. After washing with H2O the pooled extracts were stripped of solvent under vacuum to give 4.5 g of flakey, off-white solids which, on recrystallization from MeOH, were white, weighed 2.3 g, and had a mp of 132-133 deg C. Recrystallization from this acetamide from MEK did not improve its quality. Anal. (C14H21NO4) C,H,N.

 

DOSAGE: 20 - 40 mg.

 

DURATION: 8 - 12 h.

 

QUALITATIVE COMMENTS: (with 20 mg) I took it in two 10 milligram doses, spaced by two hours. There was a slight movement of surface textures, my hearing was deepened and spatially defined. The body was relaxed and stretching seemed necessary. The further I got into it the more I realized that I was totally lazy. Very lethargic, to the point of laughter. At the sixth hour, I was seeing more life in the woodwork, and the wooden angel hanging on the ceiling was flesh and feathers when I stared at it. Great vision. But by no means overwhelming. Sleep was fine.

 

(with 20 mg) The first two hours seemed like an eternity, with time passing slowly. Then it settled into a very calm and enjoyable event (not that it wasn't already). The material seemed somewhat hypnotic. I suspect that I would believe suggestions, or at least not challenge them too much. I had a little confusion but it was not troublesome. On reflection, the material was quite good. It was benign in the sense that there appeared to be no dark spots. I would try it again, perhaps at 30 milligrams. Almost base-line after 12 hours, but not quite.

 

(with 24 mg) I took the dosage in two halves, an hour apart. Initially, I was a little nauseous, with light tremors and modest eye dilation. But after another hour, there was the entire package of mescaline, missing only the intense color enhancement. The world is filled with distorted. moving things. Then my little fingers on both hands got periodically numb. And there was an occasional light-headedness that hinted at fainting. The two phenomena alternated, and never got in each other's ways. Both passed, once I realized that I would recover from this experience. Then the humor and joy of the world returned. The drop-off was quite rapid from the fifth to eighth hour, and no effects remained at all by the twelfth hour.

 

(with 40 mg) Very slow coming on. Didn't feel it for an hour, but then at a full +++ in another hour. Beautiful experience. Erotic excellent. Eyes-closed imagery and fantasy to music. No dark corners. Benign and peaceful and lovely. There were brief intestinal cramps early, and a little diarrhea, but no other problems. I was able to sleep after eight hours, but had guarded dreams.

 

(with 40 mg) Beautiful plus 3. Some visuals, but not intrusive. Moderate, good-mannered kaleidoscopic imagery against dark. Music superb. Clear thinking. Calmly cosmic. This is a seminal, or archetypal psychoactive material. A very good experience and good for repeats. About 10-12 hrs. Sleep difficult but OK.

 

EXTENSIONS AND COMMENTARY: There was absolutely no reason to suspect that the simple rearrangement of the methoxy groups of TMA from the classic 3,4,5-positions to this new, 2,4,5-orientation, would dramatically increase potency like this. Mescaline, 3,4,5-trimethoxyphenethylamine, is an extraordinary compound, but it is not particularly potent, requiring hundreds of milligrams for a trip. And going from its 3,4,5-pattern to the 2,4,5-pattern of TMPEA makes the compound even less potent. There was essentially nothing reported in the scientific literature about central activity of 2,4,5-substituted stuff, so there could not have been any logical preparation for the activity of TMA-2. My very first trials were with a rather liberal 400 micrograms, and the levels being explored leaped up in fairly large steps, mostly on separate days. On November 26, 1962, at 6:00 AM, when 12 milligrams proved to be inactive, another 12 milligrams went in and down an hour later. This was the 24 milligram discovery experiment, a fragment of which is given above. The anxiety of being thrust into the unknown certainly played a role in what can now be seen as obvious psychosomatic difficulties.

 

The unexpected ten-fold increase of effectiveness uncovered by the simple relocation of a single methoxy group of TMA gave the further juggling of methoxy groups a very high priority. There are a total of six arrangements possible for the three groups, namely, 3,4,5- (the original TMA), 2,4,5- (the present TMA-2), and then and in systematic sequence, 2,3,4-, 2,3,5-, 2,3,6-, and 2,4,6. These compounds were totally unknown at that time, and they could and would be assigned the sequential names TMA-3, TMA-4, TMA-5 and TMA-6, respectively. I made them all, and they are all included in this book.

 

Having found the treasure of 2,4,5-ness, it is instructive to look back at nature, to see what its plant equivalents might be. There are indeed a few essential oils that have their methoxy groups in this arrangement. TMA-2 is thus one of the Essential Amphetamines, and most of the botanical connections are discussed under TMA. The natural skeleton is found in asarone, with alpha-asarone being trans-propenyl, beta-asarone the cis-propenyl and gamma-asarone (also called euasarone) being the allyl-isomer. I had mentioned, in the spice cabinet discussion under TMA, the tasting of asarone at up to 70 milligrams without any effects.

 

A couple of additional experiments involving TMA-2 had been set up and started, but somehow never had enough fire to get completed. Studies on the optical isomers had gotten up to assays of 6 milligrams on each of the separate isomers, but had never been taken higher. The "R" isomer is much the more potent in rabbit assays, but the human comparisons remain unknown at present. Also, a study of the 14C labeled racemate (5 microcuries in 40 milligrams) was conducted with a view to metabolite analysis, but again, the project was abandoned before any results were obtained. In the rat, the 4-methoxyl carbon appeared as expired carbon dioxide to the extent of about 20%. And this is some four times the amount seen from either of the other two methoxyl carbon atoms.

 

One final memory in the TMA-2 area. About twenty years ago I co-authored a rather thorough review article in the British journal Nature, that described the structure-activity relationships between the simpler one-ringed psychotomimetics. It also quietly served as a vehicle for mentioning a number of newly-discovered compounds and their human activities. But as a magnificent attestment to youth and brashness, we proposed a complex compound that embraced each and every clue and hint that might tie it to the neurological process. This hybrid monster was 2,beta-dihydroxy-4,5-dimethoxyphenethylamine. It had everything. The 6-hydroxydopamine hydroxy group and the rest of the dopamine molecule intact as represented by the two methoxyl groups. And the beta-hydroxy group gave it the final "norepinephrine" touch. And, with due modesty, we proposed that it might be "an endogenous psychotogen." Why not "the endogenous psychotogen?" And then, to compound the picture, what should arrive in the mail a month or two later, and from a most respected scientist, but a sample of just this stuff, synthesized for our investigations. I must have bought a little of my own promotion, as I noted that even after my first four graded dosages with the compound, I was still only up to a 250 microgram dose. And then, as the sample became increasingly brown and was clearly decomposing, the project was finally abandoned.

 

A sad note on how things have changed since that time. I recently queried the editors of Nature, about their thoughts concerning a twenty year retrospective of this area, written by the three authors of the original review. We had each followed quite divergent paths, but each of us was still keenly the researcher. It would have been a marvelous paper to put together, and it would have delighted the reading audience of Nature, had it been the audience of twenty years ago. But not today. The journal is now dedicated to neutron stars and x-ray sources. The respected old English journal of interdisciplinary interests is not the grand and curious lady she used to be. The Editor's reply was polite, but negative. "Such an article would be unsuitable for publication in Nature at present," they said. And, I am sad to say, they're right.

 

And I am afraid that the American counterpart journal, Science, has suffered a similar deterioration. It, too, has abandoned multidisciplinary interest, but in a different direction. They are now dedicated to chromosomes, and nucleotide identification, and are totally captivated by the attention paid to, and the apparent importance of, the human genome project. There is where you automatically go to publish, now, if you have unraveled some DNA sequence from the Latvian cockroach.      

 

 

 

#159 TMA-3; 2,3,4-TRIMETHOXYAMPHETAMINE

 

SYNTHESIS: To a solution of 12.4 g 2,3,4-trimethoxybenzaldehyde in 45 mL glacial acetic acid, there was added 7 mL nitroethane and 4.1 g anhydrous ammonium acetate, and all was held at reflux temperature for 1.5 h. To the cooled and well stirred reaction mixture, H2O was added slowly, dropping out an oily crystalline solid mass. This was separated by filtration, and ground under a quantity of 50% aqueous acetic acid, and re-filtered. The 6.5 g of crude product was recrystallized from boiling MeOH to give, after air drying to constant weight, 5.0 g of 2-nitro-1-(2,3,4-trimethoxyphenyl)propene, with a mp of 56-57 deg C. Anal. (C12H15NO5) C,H.

 

To a gently refluxing suspension of 3.0 g LAH in 300 mL anhydrous Et2O under a He atmosphere, there was added 3.65 g 2-nitro-1-(2,3,4-trimethoxyphenyl)propene by allowing the condensing Et2O drip into a shunted Soxhlet thimble containing the nitrostyrene and effectively adding a warm saturated solu-tion of it dropwise. Refluxing was maintained for 5 h following the completion of the addition of the nitrostyrene. The milky reaction mixture was cooled and the excess hydride destroyed by the addition of 200 mL 10% H2SO4. When the aqueous and Et2O layers were finally clear, they were separated, and 75 g of potassium sodium tartrate was dissolved in the aqueous fraction. NaOH (25%) was then added until the pH was >9, and this was then extracted with 3x75 mL CH2Cl2. Evaporation of the solvent under vacuum produced 2.5 g of a nearly colorless clear oil that was dissolved in 300 mL anhydrous Et2O which was saturated with anhydrous HCl gas. The product, 2,3,4-trimethoxyamphetamine hydrochloride (TMA-3) separated as a fine white solid. This was removed by filtration, Et2O washed, and air dried to constant weight. The yield was 1.65 g of a product which, after recrystallization from IPA, had a mp of 148-149 deg C. Anal. (C12H20ClNO3) C,H.

 

DOSAGE: greater than 100 mg.

 

DURATION: unknown.

 

QUALITATIVE COMMENTS: (with 100 mg) There were no effects at all. No eye dilation, no believable diversion from complete normalcy. Appetite was normal, as well.

 

EXTENSIONS AND COMMENTARY: There is a small lesson to be learned from this completely inactive compound. There is no way of saying that it is or is not in-active. All that can be said is that trials were made (in this case using three separate individuals) at an oral level of 100 milligrams. And, at this level, nothing happened. And since a bottom threshold for mescaline would be perhaps 200 milligrams, it can be honestly said that the activity of this compound, if expressed relative to mescaline (using mescaline units) is less than 2 M.U. Had 200 milligrams been inactive, it would have been less than 1.0 M.U. If 2 grams had been inactive, it would have been less than 0.1 M.U. But the actual printed form, activity < 2.0 M.U. was accepted by many readers as indicating that TMA-3 was active, but at dosages greater than 100 milligrams. All that can be said is, if there is activity, then it will be at oral levels greater than 100 milligrams At the moment, as far as I know, this compound is not active in man, but then I know of no trials in excess of 100 milligrams.

 

This admonition applies to all the published M.U. values that are preceded by the "less than" sign, the "<."      

 

 

 

#160 TMA-4; 2,3,5-TRIMETHOXYAMPHETAMINE

 

SYNTHESIS: To a solution of 68 g 2,4-dimethoxybenzaldehyde in 250 mL glacial acetic acid that had been warmed to 25 deg C and well stirred, there was added, dropwise, 86 g of a 40% peracetic acid solution (in acetic acid). The reaction was exothermic, and the rate of addition was dictated by the need to maintain the internal temperature within a few degrees of 28 deg C. External cooling was used as needed. The addition took 1 h, and when the reaction had clearly been completed (no further temperature rise) the entire reaction mixture was added to 3 volumes of H2O. The excess acid was neutralized with solid K2CO3 (283 g were required). This was extracted with 3x100 mL Et2O, the extracts pooled, and stripped of solvent under vacuum to give 66 g of crude 2,4-dimethoxyphenyl formate. This was suspended in 125 mL 10% NaOH, and the mixture heated on the steam bath for 1.5 h. On cooling, the reaction mixture set to a heavy black solid. This was removed by filtration, washed with H2O, and dissolved in 250 mL CH2Cl2. The organic phase was washed with dilute HCl, and then with aqueous NaHCO3, which removed much of the color. Removal of the solvent under vacuum gave a deep red goo that was dissolved in 200 mL anhydrous Et2O and filtered through paper. The resulting clear solution was stripped of solvent, yielding 34.4 g of 2,4-dimethoxyphenol as a red oil that crystallized on cooling. A 1.0 g sample in 4 mL pyridine was treated with 0.9 g benzoyl chloride and heated on the steam bath for a few min. The addition of H2O gave a pasty solid that was isolated by pressing on a porous plate. The yield of crude 2,4-dimethoxyphenyl benzoate was 1.1 g. Recrystallization from cyclohexane gave a white product with a mp of 86-87 deg C. A second recrystallization from cyclohexane raised this to 89-90 deg C, which is in agreement with the literature value.

 

To a solution of 31.0 g crude 2,4-dimethoxyphenol in 60 mL absolute EtOH there was added a solution of 11.25 g KOH in 90 mL boiling EtOH. To this, there was then added 28 g allyl bromide which produced an immediate white precipitate of KBr. The mixture was held at reflux for 2 h and then quenched in 3 volumes of H2O. Sufficient 10% NaOH was added to make the reaction strongly basic, and this was extracted with 3x100 mL Et2O. Removal of the solvent under vacuum gave 33.2 g of 1-allyloxy-2,4-dimethoxybenzene, shown to be free of phenol starting material by GC analysis. Analyses must be carried out at low column temperatures (below 180 deg C) on an ethylene glycol succinate substrate. If a silicone column is used, even at these low temperatures, there is considerable Claisen rearrangement taking place on the column. Low temperature distillation can be used for further purification (107-110 deg C at 1.0 mm/Hg).

 

A 31.0 g sample of 1-allyloxy-2,4-dimethoxybenzene was gently heated with a soft flame until the internal temperature reached 215 deg C. An exothermic reaction took place, with the temperature rising to 270 deg C. The residue left in the flask was largely 2-allyl-4,6-dimethoxyphenol, that contained perhaps 10% of 2,4-dimethoxyphenol which resulted from the pyrolytic loss of the allyl group. This mixture was methylated without further purification.

 

To a solution of 30 g impure 2-allyl-4,6-dimethoxyphenol in a little absolute EtOH there was added a boiling solution of 8.7 g KOH in 75 mL absolute EtOH followed, immediately, by 22.4 g methyl iodide in a little EtOH. The mixture was held at reflux for 3 h, then added to 4 volumes of H2O. Sufficient 10% NaOH was added to make the mixture strongly basic, and this was extracted with 4x100 mL Et2O. Removal of the solvent gave 28 g of 1-allyl-2,3,5-trimethoxybenzene. GC analysis showed some 10% of the expected impurity, 1,2,4-trimethoxybenzene.

 

To a solution of 26 g crude 1-allyl-2,3,5-trimethoxybenzene in an equal weight of absolute EtOH there was added 52 g of flaked KOH. The mixture was heated on the steam bath overnight, and then quenched with much H2O. This was extracted with 3x100 mL Et2O which, on removal under vacuum gave 24.6 g of product. This contained, by GC analysis, largely cis- and trans-1-propenyl-2,3,5-trimethoxybenzene and the expected 1,2,4-trimethoxybenzene. This mixture was dissolved in an equal volume of pentane, and cooled in dry ice. Quick filtration gave 9.2 g of an amber solid which had a melting point of 39-41.5 deg C. Recrystallization from hexane provided pure trans-1-propenyl-2,3,5-trimethoxybenzene with a mp of 44-45 deg C. Evaporation of the original pentane mother liquor provided an impure sample of mixed cis- and trans- isomers.

 

A solution of 7.2 g trans-1-propenyl-2,3,5-trimethoxybenzene in 41 g dry acetone was treated with 3.3 g dry pyridine and, with good stirring, cooled to 0 deg C. There was then added 6.9 g of tetranitromethane over the course of 1 min, and the reaction mixture was allowed to stir for an additional 2 min. The reaction mixture was then quenched with a solution of 2.2 g KOH in 40 mL H2O. After the addition of more H2O, the product was extracted with 3x50 mL CH2Cl2. Removal of the solvent under vacuum yielded 7.0 g of an impure product which would not crystallize. This was distilled under vacuum to give four fractions, all of which crys-tallized spontaneously. Cuts #1 and #2 (bp 100-120 deg C and 120-130 deg C at 2 mm/Hg) were combined, weighed 0.8 g, and after crystallization from hexane yielded white crystals with a mp of 62-63 deg C. The NMR spectrum (in CDCl3) was in agreement with 2,3,5-trimethoxybenzaldehyde, and the literature mp has been reported as being 62-63 deg C. Cuts #3 and #4 (bp 130-170 deg C and 170-175 deg C at 2 mm/Hg with the bulk coming over in the latter fraction) were combined to give 3.0 g of yellow crystals. These were triturated under a little cold MeOH, and then recrystallized from MeOH to give 1.15 g of yellow crystals of 2-nitro-1-(2,3,5-trimethoxyphenyl)propene, with a mp of 87-88 deg C. The forerun of the distillation contained considerable unreacted trans-1-propenyl-2,3,5-trimethoxybenzene and some 1,2,4-trimethoxybenzene, by GC analysis.

 

To a refluxing and stirred suspension of 1.1 g LAH in 150 mL anhydrous Et2O and under an inert atmosphere, there was added a solution of 1.1 g 2-nitro-1-(2,3,5-trimethoxyphenyl)propene in 50 mL anhydrous Et2O. The creamy mixture was held at reflux for 4 h, cooled, and then the excess hydride cautiously destroyed by the addition of 1.5 N H2SO4. There was then added 20 g potassium sodium tartrate followed by sufficient aqueous NaOH to raise the pH to >9. The Et2O phase was separated, and the remaining aqueous phase extracted with 3x75 mL CH2Cl2. The organic phase and extracts were combined, and the solvent removed under vacuum yielding 0.9 g of a colorless oil. This was dissolved in 200 mL anhydrous Et2O which was saturated with anhydrous HCl gas. There was generated a thick oil that did not crystallize. The Et2O was decanted from this, and allowed to stand for several days in a sealed container at room temperature. There was the deposition of fine white needles of 2,3,5-trimethoxyamphetamine hydrochloride (TMA-4) weighing, after Et2O washing and air drying, 0.31 g. The mp was 118-119 deg C. Anal. (C12H20ClNO3) C,H. The residual oil was dissolved in H2O, made basic with NaOH, and extracted with CH2Cl2. Evaporation of the solvent gave 0.40 of a white oil which was dissolved in a little MeOH containing 0.22 g oxalic acid. There was the immediate deposition of crystals of the oxalate salt of 2,3,5-trimethoxyamphetamine, with a mp of about 110 deg C.

 

DOSAGE: greater than 80 mg.

 

DURATION: perhaps 6 h.

 

QUALITATIVE COMMENTS: (with 80 mg) I was concerned about life issues, with much introspection, for about 6 hours. There were no subjective physical symptoms. It was comparable to about 50 micrograms of LSD, or to 120 milligrams TMA, for me.

 

EXTENSIONS AND COMMENTARY: That is the sum total of the knowledge of subjective effects that exist. There was such a precious small amount of the final hydrochloride salt that, by the time the needed build-up of dosage had been completed, there was just enough left for this single trial, which was conducted in South America. Based upon the volunteered comparisons to LSD and TMA, a potency for this compound has been published that states that it is 4x the potency of mescaline, or 4 M.U. The material must be re-synthesized, and re-evaluated with the now-accepted protocol.

 

In the future re-synthesis, there will be a considerable improvement made with the several steps that are described above. The products from the preparations of the phenol, the allyl ether, the Claisen rearrangement, the methylation of the new phenol, and the isomerization to the mixture of cis- and trans-propenylbenzenes were all conducted without the benefit of a Kugel-Rohr apparatus. The products became progressively thick and blacker, and it was only by the grace of getting a solid at the trans-propenyl stage that some degree of purity could finally be obtained. All of the intermediates are certainly white oils, and when this preparation is repeated, they will be distilled at each and every stage.

 

This 2,3,5-orientation of the methoxy groups on the aromatic ring is far and away the most difficult tri-substitution pattern known to chemists. There just isn't any simple way to put it together. The 2-carbon phenethylamine (2,3,5-trimethoxyphenethylamine) had been synthesized quite a while ago. Its role as a substrate for liver amine oxidase in in vitro studies has been explored, but it has never been tried in man. Even more bizarre is the amphetamine with this oxygenation pattern, in which a methylenedioxy ring has replaced the two adjacent methoxyl groups. This is the material 2,3-methylenedioxy-5-methoxyamphetamine, or MMDA-4. Despite its theoretical appeal (being one of the six possible MMDA derivatives) and it's synthetic challenge (as with the 2,3,5-trimethoxy things above, everything is simply in the wrong position) the compound is of unknown pharmacology. This follows, quite logically, from the fact that it has never been synthesized. No one has yet put together a workable procedure that would make it. In the course of making all possible positional isomers of MMDA explicitly Schedule I drugs, the DEA has named this compound, and since it was specifically named, it was entered into the Chemical Abstracts. So it is listed in the literature, at least it is in the Chem. Abstracts. But it is in reality completely unknown. Some day, some one somewhere will have a light bulb go on over his head, and find a synthetic process that will make it. Of course, the moment it is made, an illegal act will have occurred, at least in the United States as long as the present laws remain unchanged, as it is currently a Schedule I drug.

 

Needless to say, the 2-carbon analog of MMDA-4, 2,3-methylenedioxy-5-methoxyphenethylamine (would 2C-MMDA-4 be a reasonable name?) is also unknown.      

 

 

 

#161 TMA-5; 2,3,6-TRIMETHOXYAMPHETAMINE

 

SYNTHESIS: A solution of 100 g 1,2,4-trimethoxybenzene in 1 L hexane was cooled to 15 deg C and treated with 400 mL of a 15% solution of n-butyllithium in hexane. A white precipitate formed immediately, and stirring was continued for an additional 2 h while the reaction returned to room temperature. There was then added a solution of 40 g freshly distilled propionaldehyde in 100 mL hexane. The reaction was exothermic and, as the stirring was continued, the precipitate gradually dissolved. Stirring was continued overnight at room temperature. There was then added 1 L H2O, and the reaction was acidified with HCl. The hexane phase was separated, and the remaining aqueous phase was extracted with hexane, then with Et2O. The pooled organic extracts were stripped of solvent under vacuum, and the residue distilled to give 60 g ethyl 2,3,6-trimethoxyphenyl carbinol, with an index of refraction nD20 = 1.5192. Anal. (C12H18O4) C,H. From the Et2O extracts above, additional carbinol was obtained, containing a small amount of the starting 1,2,4-trimethoxybenzene. The two materials were readily separated by vacuum distillation, providing an additional 21 g of carbinol.

 

The above alcohol, 60 g of ethyl 2,3,6-trimethoxyphenyl carbinol, was stirred without solvent and cooled to 0 deg C with an external ice bath. There was then added 80 g PBr3 at a rate that maintained the temperature below 60 deg C. At the end of the addition, there were added quantities of chipped ice, followed by H2O. The reaction mixture was extracted with 3x100 mL Et2O, and removal of the solvent provided 60 g of 1-bromo-1-(2,3,6-trimethoxyphenyl)propane which was used in the following dehydrobromination step without further purification.

 

A solution of the above 60 g of 1-bromo-1-(2,3,6-trimethoxyphenyl)propane in an equal weight of EtOH was treated with 120 g of flaked KOH. The exothermic reaction was allowed to run its course with stirring continued overnight. The mixture was then quenched in H2O and extracted with 3x200 mL CH2Cl2. Removal of the solvent from the pooled extracts gave a crude product which contained no starting bromo material, but which was contaminated with an appreciable quantity of the ethoxy analogue, 1-ethoxy-1-(2,3,6-trimethoxyphenyl)propane. This impure product was heated briefly to 80 deg C with 50% H2SO4. Cooling, dilution with water, and re-extraction with 3x100 mL CH2Cl2 gave, after removal of the volatiles under vacuum, 1-(2,3,6-trimethoxyphenyl)propene. This was distilled to provide 7.0 g of a clear oil that was a 12:1 ratio of the trans- and cis-isomers.

 

A well-stirred solution of 6.8 g of the mixed isomers of 1-(2,3,6-trimethoxyphenyl)propene in 40 g of dry acetone was treated with 3.2 g pyridine and cooled to 0 deg C with an external ice bath. There was then added 6.5 g tetranitromethane over the course of 1 min, the stirring was continued for an additional 2 min, and then the reaction mixture was quenched by the addition of 2.2 g KOH in 40 mL H2O. There was additional H2O added, and the organics were extracted with 3x75 mL CH2Cl2. The solvent from the pooled extracts was removed under vacuum, and the 5.3 g residue distilled at 0.2 mm/Hg. A fraction boiling at 150-170 deg C proved to be largely 2,3,6-trimethoxybenzaldehyde. A second fraction (170-200 deg C at 0.2 mm/Hg) also spontaneously crystallized to a yellow solid. This was recrystallized from MeOH to provide, after drying to constant weight, 2.8 g of 2-nitro-1-(2,3,6-trimethoxyphenyl)propene with a mp of 73-74 deg C. Anal. (C12H15NO5) C,H.

 

To a refluxing and stirred suspension of 2.4 g LAH in 300 mL anhydrous Et2O and under an inert atmosphere, there was added a solution of 2.4 g 2-nitro-1-(2,3,6-trimethoxyphenyl)propene in 100 mL anhydrous Et2O. The mixture was held at reflux for 4 h, cooled, and then the excess hydride cautiously destroyed by the addition of 1.5 N H2SO4. There was then added 40 g potassium sodium tartrate followed by sufficient aqueous NaOH to raise the pH to >9. The Et2O phase was separated, and the remaining aqueous phase extracted with 3x100 mL CH2Cl2. The organic phase and extracts were combined, and the solvent removed under vacuum yielding 1.8 g of a colorless oil. This was dissolved in 200 mL anhydrous Et2O which was saturated with anhydrous HCl gas. There was generated a thick oil that slowly crystallized. The resulting white crystalline solid was removed by filtration, providing 2.2 g 2,3,6-trimethoxyamphetamine hydrochloride (TMA-5). The mp was 124-125 deg C. Anal. (C12H20ClNO3) C,H.

 

DOSAGE: 30 mg or more.

 

DURATION: 8 - 10 h.

 

QUALITATIVE COMMENTS: (with 20 mg) There appeared to be a slight stimulation. Modest eye dilation, but normal pulse. If this is the marginal edge of intoxication, then it is not a psychotomimetic, but a stimulant. Go up with care.

 

(with 30 mg) Intense introspection. Comparable to about 75 micrograms of LSD, or more.

 

EXTENSIONS AND COMMENTARY: TMA-5, as was the case with TMA-4, has only been superficially explored. The above two quotations are from two different people, and together no more than hint at the possibility that it might be active in the several tens of milligrams.

 

Pharmacologists have developed quite an art in the design and evaluation of animal behavior models for the study of psychedelic drugs. They have always faced two formidable tasks, however. There is the qualitative question: is the drug a psychedelic? And there is the quantitative question: how potent is it?

 

The first question is addressed by taking a number of known psychedelic drugs, and searching for some animal responses that are common to all. Since there is little logic in the argument that animals can experience, let alone reveal, altered states of consciousness or fantasy fugues or colored imagery, the investigator must look for objective signs such as conditioned responses to stimuli, or unusual behavior. If one explores ten drugs that are known psychedelics, and all ten produce, say, bizarre nest-building behavior in mice, and an eleventh drug of unknown pharmacology does exactly the same thing, then the eleventh drug can be suspected of being a psychedelic drug.

 

And the second question, how potent, is answered by seeing how much of the drug is required to evoke this standardized behavior. This is called the dose-response curve, in which the more drug you give, the more response you get. This curve gives confidence that the drug is indeed responsible for the activity that is seen, as well as giving a quantitative measure of that activity.

 

But this entire discipline depends on the acceptance of the fact that the first ten drugs are indeed psychedelic materials. And these inputs can only come from human trials. What is the validity of these assumptions with TMA-5? Not very good. The statement that it is psychedelic has actually been published in reviews solely on the basis of the above two studies; the potency has been put at some ten times that of mescaline. Mescaline is certainly an effective psychedelic drug in the 300-500 milligram range, and this factor of ten implies that TMA-5 is also a psychedelic drug and is active in the 30-50 milligram range. And indeed, both statements may be true, but confidence in these conclusions must await more extensive trials.

 

The two-carbon analogue of TMA-5 is 2,3,6-trimethoxyphenethylamine (or 2C-TMA-5 or 2,3,6-TMPEA). This is a known material, although there has been some controversy as to its physical properties. It has been studied in monoamine oxidase systems, and appears to be either a competitive substrate or an inhibitor of that enzyme. But as far as I know, no one has nibbled it, so its human activity is unknown.     

 

 

 

#162 TMA-6; 2,4,6-TRIMETHOXYAMPHETAMINE

 

SYNTHESIS: To a solution of 100 g phloroglucinol dihydrate in 320 mL MeOH there was added 55 mL of concentrated H2SO4, and the clear solution held under reflux conditions overnight. After cooling, there was added 500 mL H2O, and the bulk of the MeOH was removed under vacuum. The residual oil was extracted with Et2O, and the removal of this left 60 g of a red oil as residue. This was dissolved in 300 g methyl sulfate (caution, this is extremely toxic through skin contact, and any exposure must be flushed thoroughly with dilute ammonium hydroxide). With good stirring, this was cautiously treated with 500 g of 40% aqueous KOH, and the exothermic reaction allowed to run its course. Extraction with 3x100 mL Et2O gave, after evaporation of the solvent from the pooled extracts, an oil that became largely crystalline. This was suspended in 100 mL hexane, and filtered through a coarse fritted funnel. With evaporation there was obtained 57 g of 1,3,5-trimethoxybenzene as a pale amber solid that melted at 44-50 deg C. A sample purified by recrystallization from EtOH had the proper mp of 54-55 deg C.

 

A mixture of 62.9 g N-methylformanilide and 71.3 g of POCl3 was allowed to stand for 0.5 h producing a light claret color. There was then added 30.9 g of 1,3,5- trimethoxybenzene and the mixture heated on the steam bath for 2 h. The reaction mixture then was poured into chipped ice, and allowed to stir for several h. The dark gummy mess was extracted with 2x100 mL Et2O (this was discarded) and then with 4x200 mL CH2Cl2. The latter extracts were pooled, and stripped of solvent under vacuum yielding 14 g of an amber solid. This was recrystallized from 80 mL boiling MeOH (with decolorizing charcoal employed and filtration of the boiling solution through paper) to give 10.0 g of 2,4,6-trimethoxybenzaldehyde as a white crystalline solid with a mp of 115-116 deg C. The literature values are generally one-degree ranges, and they are reported as high as 121 deg C. The malononitrile adduct was prepared from a solution of 0.5 g aldehyde and 0.5 g malononitrile in 10 mL warm MeOH treated with a drop of triethylamine. There was an immediate formation of a yellow crystalline mass which was removed by filtration, washed with EtOH, and air dried. The yield of 2,4,6-trimethoxybenzalmalononitrile was 0.5 g and the mp was 174-175 deg C. Anal. (C13H12N2O3) N.

 

A solution of 5 g 2,4,6-trimethoxybenzaldehyde in 20 g nitroethane was treated with 1.0 g of anhydrous ammonium acetate and held on the steam bath for 24 h. The excess solvent/reagent was stripped from the deep-red colored solution under vacuum yielding a residue that spontaneously set to a crystalline mass. This was well triturated under 5 mL MeOH, filtered, and washed with 3 mL additional MeOH to give 5.4 g of 2-nitro-1-(2,4,6-trimethoxyphenyl)propene as yellow crystals. The mp of the crude material was 135-142 deg C which could be raised to 147-148 deg C by recrystallization from EtOH. The use of an alternate procedure for the synthesis of this nitrostyrene, using acetic acid as solvent and a stoichiometric amount of nitroethane (and ammonium acetate as catalyst), gave very poor yields. The use of butylamine as catalyst gave considerably better results.

 

A suspension of 50 g LAH in 1 L anhydrous THF was placed under an inert atmosphere, stirred magnetically, and brought to a gentle reflux. There was added a total of 56.9 g 2-nitro-1-(2,4,6-trimethoxyphenyl)propene as a saturated solution in THF. This was achieved by letting the condensed THF drip through a Soxhlet thimble containing the nitrostyrene with direct addition to the reaction mixture. The solubility was extremely low. The stirred mixture was maintained at reflux for 36 h, generating a smooth creamy gray color. After being brought to room temperature, the excess hydride was destroyed by the patient addition of 50 mL H2O, followed with 50 mL 15% NaOH (still some heat evolved) and then 150 mL additional H2O. Stirring was continued until the insoluble salts were white and loose. These solids were removed by filtration, and the filter cake washed with additional THF. The combined filtrate and washes were stripped of solvent under vacuum, and the 73 g of pale amber residue dissolved in 200 mL IPA, neutralized with approximately 50 mL concentrated HCL, and diluted with 2 L anhydrous Et2O. A lower, oily phase separated slowly set up as a crystalline mass. This was removed by filtration, Et2O washed, and allowed to air dry to constant weight. The weight of 2,4,6-trimethoxyamphetamine hydrochloride was 41.3 g and the color was an off-white. There was a tendency to discolor upon air exposure. The mp was 204-205 deg C which was increased to 207-208 deg C upon recrystallization from IPA. The literature gives a mp of 214-215 deg C for this salt after isolation and purification as the picrate salt (with a mp 212-213 deg C from EtOH).

 

DOSAGE: 25 - 50 mg.

 

DURATION: 12 - 16 h.

 

QUALITATIVE COMMENTS: (with 25 mg) I was outside at the California-Washington State football game, which was completely nutty. As was I. With the crowd activity, it was impossible to separate the drug's action from the environment. Later I simply sat in the car, and tried to define what the effects really were. Things were completely benign, there was ease with concepts, and writing was good and smooth. At twelve hours, comfortably down. Maybe a plus two.

 

(with 35 mg) My body was tingling all over, and there were times when walking was unsteady. Thinking was a little difficult, as I was quite intoxicated most of the day (all of the day, now that I think that over). To accomplish anything, such as toasting the toast in the toaster, was difficult. And things were so funny most of the time. Setting the table for supper, six hours later, proved to be hilarious. I like to think of the day as a mixture of the mad hatter's tea party, and a trip to the moon. We were all still intoxicated at bedtime, whatever time that was. Had difficult time sleeping. If I were to repeat, would go lighter in dosage, I feel.

 

(with 40 mg) This experiment was begun at noon of a cool rainy day. Almost all of the day had to be spent indoors, without benefit of sunshine, This is worth mentioning because there was, for the first eight hours of the experiment, a decided feeling of inner chill which might not have occurred so strongly had it been a warm day. Most, if not all, of the other eight subjects also reported the same chill. There was some visual sparkle which persisted throughout. At the two hour point a minor but persistent stomach queasiness came on, preceded by a diarrhea-like bowel movement. There was no impairment of speech, but there was some halting quality to all thought processes. It was easy to talk about personal matters, but there did not seem to be a significant insight increase. Appetite for food was lessened. Sleep was decidedly difficult after the effects of the material seemed otherwise gone.

 

(with 40 mg) As the experience grows in intensity for the first four hours, I feel a strange mixture of plateaus, exuberance, and strong negative feelings, all replacing each other. I found myself inside a stout, hemispherical shell, curled up in the solid part, thoroughly walled off but absolute master within the shell, calling all shots, making all decisions, in complete control. Moving beyond the half-shell meant becoming vulnerable, which I refused to do. Consequently my difficulty in hearing what other people say, becoming involved in their perceptions and lives. I keep relationships shallow, pull away inside my shell rather than become involved. I like to be by myself. This was a great revelation; I had never seen it before. This material had an enormous drive. I feel extremely grateful for exposing a very deep personal problem.

 

(with 50 mg) My previous try at this level produced a record that said, 'alteration of consciousness, but no visual, no anything,' and oh my, surprise! It was very, very active, visual, colorful, etc., etc. Good talking, clear and steady control of body, despite intense energy flow. Extremely funny Q great humor, wonderful laughter.

 

EXTENSIONS AND COMMENTARY: Here is a simple and easily made compound that might well bid fair to be one of the most rewarding and pleasurable of the methoxylated amphetamines. It is fully as potent as its counterpart, TMA-2. This latter compound, with its 2,4,5-trisubstitution pattern, has served as a template from which an immense family of very active and fascinating drugs have arisen. The 2,5-dimethoxy aspect has been kept intact, and modifications in the 4-position have given rise to treasures such as DOM, DOB, DOET, DOI, and the Aleph compounds. And, of course, the entire world of the 2C-X's has exploited this same orientation.

 

Here, there is the blatant, parallel call from TMA-6. It can serve, as the 2,4,6-counterpart, as a similar template compound. And the first indicators are that, in keeping the 2,6-dimethoxy aspect intact, a completely analogous series could be made, again with modifications of the 4-position. These have been named the psu-series, or psi-series, as an abbreviation for the prefix, pseudo, and can be differentiated from the 2,4,5-things with the use of the Greek letter "gamma". Thus there is the gamma-DOM (called Z-7 in this book, and certainly an active compound), and gamma-DOB, gamma-DOET, gamma-DOI, and the gamma-ALEPH compounds. And, of course, the gamma-2C-X counterparts. I would expect all of them to be active and, certainly, some of them interesting. They will be considerably more difficult to synthesize. However, some of them, specifically things such as gamma-2C-T-4, have already been prepared, and are being evaluated.

 

One of the guiding premises of this Book II was to make all recipes employ commercially available materials as starting materials. And in the case of TMA-6, the required benzaldehyde (2,4,6-trimethoxybenzaldehyde) is an easily obtained trade item from any of several supply houses. Why not start the recipe there? Why tell how to make it from 1,3,5-trimethoxybenzene (also presently available from commercial sources) and how to make the ether in turn, from phloroglucinol? This simply reflects a valid paranoia of our times. Today the aldehyde is available (at $2/g) and can be easily purchased. But tomorrow? What about in the year 2003? Who can tell what will, or will not, be easily available then? There might be a world-wide acknowledgment that the "war on drugs" is more destructive than any drug itself could ever be, and every law that had been written in the attempt to dictate human behavior will have been transformed into a force that truly educates and allows choice. This might really happen. But maybe, on the other hand, no fine chemicals may be permitted to be held in any hands, at any price, except for those of licensed chemists and in authorized laboratories. The black market price for the aldehyde might be $1000/g with another $1000 for protection. But, it will be impossible to remove phloroglucinol from availability.

 

It is available as a natural component in the free form, in sources as diverse as the cones of the Sequoia sempervirens (the coast redwood tree) and species of Camillia (that provides the leaves of our morning tea). And combined with a molecule of glucose in the form of its glucoside, it is called phlorin, and it is present in the discarded rinds of almost all citrus fruits as well as the resins from many of the Eucalyptus species. And one step yet further back into nature, there is a dihydrochalcone glucoside called phloridzin which practically drips out of all parts of the apple and pear trees except for the apple or pear itself. It, on base hydrolysis, gives phlorin, which on acid hydrolysis gives phloroglucinol, which when dissolved in methanol and sulfuric acid gives Q. Nature is indeed most bountiful.

 

The phenethylamine homologue of TMA-6 is well known, but is virtually unexplored pharmacologically. The above benzaldehyde with nitromethane in glacial acetic acid containing ammonium acetate gave the appropriate beta-nitrostyrene as yellow crystals with a mp 177-177.5 deg C. This, with LAH in ether, gave 2,4,6-trimethoxyphenethylamine (2,4,6-TMPEA, or 2C-TMA-6) as the picrate salt (mp 204-205 deg C) or the hydrochloride salt (mp 234-235 deg C). It has been shown not to be a substrate to the soluble amine oxidase from rabbit liver, a property it shares with mescaline, but whether it is or is not active in man is at present unknown.     

 

 

 

#163 3-TME; 3-THIOMETAESCALINE;


Поделиться:



Последнее изменение этой страницы: 2019-03-30; Просмотров: 303; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.368 с.)
Главная | Случайная страница | Обратная связь