Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Преимущества методов дистанционного зондирования



К достоинствам информации, полученной при дешифрировании космических снимков, можно отнести следующие:

· многомасштабность - информация о природной среде, до 1 кв. км (аэросъемки, соответственно с пространственным разрешением от 1 км до 10 см);

· многозональность - информация о природной среде должна быть получена синхронно в разных спектральных интервалах отражения солнечного света собственного излучения Земли, а также другими методами зондирования (радарными, лазерными и т.д.);

· автоматизация - вся информация о природной среде в аналогово-цифровой форме вводится в память ЭВМ и обрабатывается с помощью машинных алгоритмов при участии исследователей природоведческого профиля;

· непрерывность - вся информация от дистанционного приемника на космических летательных аппаратах (КЛА) до выхода результатов в форме карты или сигнала для научного и практического использования должна обрабатываться в одном масштабе времени, деятельности, достоверности и объеме;

· комплексность - вся информация о природной среде должна быть многосторонней для изучения разных компонентов Земли (литосферы, атмосферы, гидросферы, биосферы и т.д.), используемых в разных отраслях народного хозяйства [2].

· генерализация - c уменьшением масштаба на снимке теряются многие детали изображения природной среды, но в результате «космической» (спектральной, геометрической и тематической) генерализации на нем «проявляется» новая информация. Например, за счет более высокой степени визуализации крупных полей с различной оптической плотностью надежно дешифрируются линеаменты, кольцевые структуры, морские течения и другие природные объекты и явления.

К достоинствам дистанционных методов можно отнести и то, что при большом территориальном обзоре динамические процессы можно анализировать с учетом более широкого спектра географических закономерностей и взаимосвязей между компо­нентами природной среды. Практика показала, что при использовании космических методов можно отказаться от традиционного поэтапного метода картосоставления и перейти на технологию обновления карты требуемого масштаба, а не всего масштабного ряда. Это сокращает цикл работ на несколько лет. Кроме того, в связи с большим территориальным охватом космического снимка и малыми искажениями контуров в горных районах уменьшается трудоемкость работ по обновлению карт.

 

Виды и типы съемок

Среди дистанционных съемок геостационарных ИСЗ широкое развитие получила радиолокационная (РЛ) съемка. Она позволяет быстро и независимо от погодных условий, времени суток получать изображение местности, близкое по своим изобразительным свойствам к мелкомасштабному изображению. Большое влияние на характер радиолокационного изображения оказывают влажность, электропроводность, плотность объектов исследования. Применяется в геологических исследованиях.

В настоящее время широкое применение находит тепловая инфракрасная съемка. Изменения температурных контрастов различных горных пород, почвенно-растительных зон играют решающую роль в построении инфракрасного изображения. Температурные колебания находятся в прямой зависимости от внешних условий, и температурные контрасты могут сильно изменяться во времени (суточные, сезонные, зональные).

Для исследования природных явлений и ресурсов все более широкое применение находят геостационарные природно-ресурсные искусственные спутники Земли, пилотируемые космические корабли и орбитальные станции, с разных высот ведущие наблюдения за земной поверхностью.

Выделяют несколько уровней космических съемок: глобальный, региональный, локальный [8].

Примером космических снимков глобального уровня генерализации могут служить снимки, полученные с автоматической межпланетной станции «Зонд», на которых изображается почти вся освещенная в момент съемки часть Земли. Они несут изображение наиболее крупных геологических объектов, которые хорошо отличаются оптическими яркостями. В основном, это структуры первого, иногда второго порядка, зоны крупных глубинных разломов.

Космические снимки регионального уровня генерализации получают с автоматических спутников системы «Метеор» (телевизионные) и «Метеор-Природа» (сканерные), «LANDSAT», запущенных с целью изучения природных ресурсов. На этих снимках проявляются взаиморасположения геоструктурных областей, а в их пределах - структуры второго порядка: валы, купола, грабены, крупные складки.

Космические снимки локального уровня генерализации по своей информативности близки к мелкомасштабным аэрофотоснимкам [2].

КА Landsat-7, запущенный в рамках программы Landsat, является проектом трех крупных американских правительственных организаций: NASA, NOAA и USGS. Он снабжен аппаратурой ETM+ (EnhancedThematicMapperPlus - усовершенствованный тематический картограф), которая обеспечивает съемку земной поверхности в четырех режимах: VNIR (VisibleandNearInfrared - мультиспектральный видимый и ближний инфракрасный диапазон), SWIR (ShortwaveInfrared - средний инфракрасный диапазон), PAN (panchromatic - панхроматический диапазон), TIR (thermalinfrared - тепловой инфракрасный диапазон).

Реализация программы Landsat началась в 1972 г. с запуском спутника Landsat-1, - первого гражданского космического аппарата, который обеспечивал оперативную передачу изображений среднего пространственного разрешения по радиоканалу. Данные шести последующих спутников серии Landsat получили широкое распространение в мире. С 2009 г. все космические снимки программы Landsat находятся в открытом бесплатном онлайн доступе.

Решаемые задачи:

· создание и обновление топографических и специальных карт, вплоть до масштаба 1:200 000;

· обновление топографической основы для разработки проектов схем территориального планирования субъектов федерации;

· обоснование перспективных площадей под поисковые работы на нефть и газ, прогнозирование и выявление ловушек нефти и газа, потенциальная оценка их нефтегазоносности;

· поиск и обоснование перспективных площадей под поисковые работы на рудные и нерудные полезные ископаемые;

· мелкомасштабная лесная инвентаризация. Контроль лесопользования и мониторинг состояния лесов;

· сельскохозяйственное картографирование на уровне регионов, мониторинг состояния посевов, прогнозирование урожайности;

· автоматизированное создание карт растительности, ландшафтов и природопользования;

· мониторинг и прогнозирование процессов заболачивания и опустынивания, засоления, карста, эрозии, степных пожаров половодий, паводков и т.п.

 

Таблица 1.3.1- Основные характеристики космического аппарата [2].

 

Параметр

Значение

Дата запуска:

15 апреля 1999 г.

Стартовая площадка:

авиабаза Ванденберг (США)

Средство выведения:

РН Delta II (США)

Разработчик:

LockheedMartin (США)

Операторы:

NASA (США), NOAA (США) и USGS (США)

Масса:

1973 кг

 

Орбита

Тип: Солнечно-синхронная
Высота: 705 км
Наклонение: 98,2 град.

Расчетный срок функционирования:

7 лет

 

Таблица 1. 3. 2 - Основные технические характеристики

съемочной аппаратуры [2].

 

Режим съемки VNIR SWIR PAN TIR
Спектральный диапазон, мкм 0,45-0,52 (синий) 0,53-0,61 (зеленый) 0,63-0,69 (красный) 0,78-0,90 (ближний ИК) 1,55-1,75 2,09-2,35   0,52-0,90     10,40-12,50    
Пространственное разрешение (в надире), м 30 30 5 60
Радиометрическое разрешение, бит на пиксель

8

Ширина полосы съемки, км

185

Периодичность съемки, сутки

16

Возможность получения стереопары

Нет

Формат файлов

GeoTIFF

Скорость передачи данных на наземный сегмент, Мбит/с

150

 


Поделиться:



Последнее изменение этой страницы: 2019-03-31; Просмотров: 250; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь