Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация нагнетателей.



  Нагнетатели можно классифицировать по различным признакам: по конструкции, способу действия, развиваемому давлению, роду перемещаемой среды. В пределах каждой классификационной группы нагнетатели могут подразделяться по вторичным признакам.

  Согласно ГОСТ 17398-72 «Насосы. Термины и определения» насосы подразделяются на две основные группы:

1. насосы динамические;

2. насосы объёмные.

  Такое разделение принято для всего класса нагнетателей, независимо от рода перемещаемой среды.

  ОПР: Динамическим нагнетателем называется машина, повышающая энергию жидкости или газа путём использования работы массовых сил потока в полости, постоянно соединенной с входом и выходом нагнетателя.

  Например, в центробежном нагнетателе рабочее тело повышает энергию вследствие воздействия центробежных сил при движении через межлопастные каналы рабочего колеса.

  ОПР: Объёмным нагнетателем называется машина, в которой повышение энергии рабочего тела достигается силовым воздействием твёрдых рабочих тел, например, поршней в поршневых машинах, в рабочем пространстве цилиндра, периодически соединяемом при помощи клапанов со входом и выходом нагнетателя.

  Приведём классификацию нагнетателей по способу действия и конструктивным признакам рис. 1.

      

 

Рис.1 Классификация нагнетателей.

  Принципы работы:

Лопастные машины представлены тремя основными группами – центробежными, осевыми и вихревыми. Большое распространение их объясняется достаточно высоким КПД, компактностью и удобством комбинирования их с приводными электродвигателями.

  Схема динамического центробежного нагнетателя (насоса) представлена на рис. 1. Рабочее колесо, снабженное изогнутыми лопатками 1, вращается двигателем, расположенным в корпусе 2. Рабочее тело (жидкость, газ), входящее в центральную полость колеса через патрубок 3, заполняет весь корпус и криволинейные каналы колеса между лопатками 1. При вращении рабочего колеса под действием центробежных сил масса рабочего тела, находящегося в этих каналах, повышает энергию потока и выбрасывается потоком в спиральный канал, охватывающий рабочее колесо. Далее поток поступает в напорный патрубок 4 и трубопровод 5. Процесс всасывания и подачи в таких нагнетателях происходит непрерывно и равномерно (при постоянной скорости вращения рабочего колеса).

  Для подачи жидкостей и газов находят применение динамические лопастные нагнетатели осевого типа рис. 2. Лопасти 1 осевого нагнетателя закреплены на втулке 2 под некоторым углом к плоскости, нормальной к оси. При вращении лопасти взаимодействуют с потоком жидкости, сообщая ей энергию и перемещая её вдоль оси насоса.

  Схема вихревого нагнетателя представлена на рис. 3. В корпусе 1 концентрично располагается колесо с плоскими радиальными лопатками 2. Рабочее тело поступает через всасывающий патрубок в кольцевой канал 3, увлекается лопатками 2, совершая сложное вихревое движение и повышая энергию, выходит через напорный патрубок 4 в трубопровод.

  Работа объёмных насосов основана на всасывании и вытеснении жидкости твёрдыми телами (поршнями, пластинами, зубцами), движущимися в рабочих полостях. Схема поршневого насоса приведена на рис. 4. Цилиндр 1 сопряжен с клапанной коробкой 2, в гнёздах которой расположены всасывающий и нагнетательный клапаны 3 и 4. Поршень 5, движущийся в цилиндре возвратно-поступательно, производит попеременно всасывание из трубы 6 и нагнетание в трубу 7. Поршневые насосы обладают неравномерностью подачи, обусловленной периодичностью движения поршней. Это привело к появлению насосов вытеснения вращательного типа, называемых роторными.

  Схема роторного пластинчатого насоса приведена на рис. 5 раздаточного материала. При вращении цилиндра 1 пластинки 3 производят всасывание через приёмный патрубок 4 и нагнетание через напорный патрубок 5. Насос является реверсивным: при изменении направления вращения его вала изменяется направление движения жидкости в трубопроводах, присоединенных к насосу.

  Схема роторного зубчатого шестеренного насоса представления на рис. 6.Сцепляющиеся зубчатые колеса помещены с малыми зазорами в корпусе 3. Одно из колес ведущее, другое – ведомое. При вращении колес в направлении, указанном стрелками, жидкость поступает в полости всасывания 4 во впадины между зубьями и перемещается в напорную полость 5; здесь при сцеплении происходит выдавливание жидкости из впадин.

  Для подачи газов, чистой воды и растворов могут применяться все описанные типы насосов. Для жидкостей с большой вязкостью используют объёмные и лопастные насосы. Смеси золы или грунта с водой по соображениям износа трущихся частей машины подаются обычно струйными и лопастными насосами.

  Основными параметрами каждого насоса являются его подача и давление. Насосы принято разделять на группы по величинам этих параметров. Каждому типу насосов соответствуют определенные области подач и давлений. Например, насосы поршневые и роторные применяются при высоком давлении и относительно низкой подаче. Осевые насосы приспособлены для подачи больших количеств жидкостей при низких давлениях. Используя величины подач и напоров выполненных конструкций насосов и нанося их в координатной системе Q – H, можно получить график областей применения различных типов насосов. Такой график для водяных насосов представлен в логарифмической координатной сетке на рис. 6 раздаточного материала.


Поделиться:



Последнее изменение этой страницы: 2019-04-01; Просмотров: 899; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь