Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Фазы гидравлического удара



Рассмотрим фазы гидравлического удара при закрытии трубы, по которой жидкость вытекает из открытого резервуара. Пусть в конце горизонтальной трубы, по которой жидкость движется со скоростью V0, произведено мгновенное закрытие крана, рис.9.1.а. При этом скорость частиц жидкости, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдёт в работу деформации стенок трубы и жидкости (стенки растягиваются, а жидкость сжимается).

На заторможенные частицы у крана набегают другие, соседние с ними и тоже теряют скорость; в результате сечения n-n перемещается влево со скоростью с, называемой скоростью ударной волны. Сама же переходная область, в которой давление изменяется на величину Δ pуд, называется ударной волной.

Рис.9.1

Когда ударная волна переместится до резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы растянутыми. Ударное повышение давления Δ pуд распространится на всю трубу, рис.9.1.б. Но такое состояние не является равновесным. Под действием перепада давления Δ pуд частицы жидкости устремятся из трубы в резервуар, причём это движение начнётся с сечения, непосредственно прилегающего к резервуару. Теперь сечение n-n перемещается в обратном направлении – к крану – с той же скоростью с, оставляя за собой выровненное давление р0, рис.9.1.в.

Жидкость и стенки трубы предполагаются упругими, поэтому они возвращаются к прежнему состоянию, соответствующие давлению р0. Работа деформации полностью переходит в кинетическую энергию и жидкость в трубе приобретает первоначальную скорость V0, но направленную теперь в противоположную сторону. С этой скоростью «жидкая колонна», рис.9.1.г, стремится оторваться от крана, в результате возникает отрицательная ударная волна (P0 - Δ Pуд), которая направлена от крана к резервуару со скоростью c, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость, что обусловлено снижением давления, рис.9.1д. Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.

Состояние трубы в момент прихода отрицательной ударной волны к резервуару показано на рис.9.1.е. Так же как для случая, изображённого на рис.9.1.б, оно не является равновесным. На рис.9.1.ж показан процесс выравнивания давления в трубе и в резервуаре, сопровождающийся возникновением движения жидкости со скоростью V0.

Очевидно, что как только отражённая от резервуара ударная волна под давлением Δ pуд достигает крана, возникает ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторился. После нескольких циклов из-за возникающего при движении трения Δ pуд постепенно уменьшается, и энергия рассеивания.

9.2 Формула Н.Е. Жуковского для Δ p уд

Для определения Δ pуд применим второй закон Ньютона в виде

(9.1)
.

(9.2)
Проекция (9.1) на направление вдоль скорости имеет вид (в приращениях)

                                                  

Рис.9.2. В трубе, рис.9.2. первоначально давление было р0, а скорость равна v0 и направлена слева направо. Если в момент t0 на линии 0-0 произошла остановка жидкости, например, с помощью крана, то в области от линии 0-0 до линии 1-1 произошло повышение давления на Δ pуд за время Δ t. Ударная волна переместилась на расстояние Δ х за время Δ t.  Тогда , , где S – площадь сечения трубы, ρ – плотность жидкости.

(9.3)
Согласно (9.2) необходимо учесть последние два выражения; в результате  или . Величина

(9.4)
есть скорость распространения ударной волны, поэтому окончательно

Зависимость (9.4) носит название формулы Жуковского для величины превышения давления при гидравлическом ударе.

Скорость распространения ударной волны с зависит от рода жидкости материала, диаметра, толщины стенок трубы и может быть найдена так

(9.5)

где ρ – плотность жидкости, Е0 – модуль упругости жидкости, d – внутренний диаметр трубы, Е – модуль упругости материала стенок трубы, δ – толщина стенок трубы.

Для воды при обычных значениях отношения δ /d значения скорости с может приближённо приниматься равным 1200 м/с для стальных труб и 1000 м/с для чугунных.

Формула (9.5) справедлива для так называемого прямого гидравлического удара.

Гидравлическиё удар называется прямым, если время закрытия запорного устройства меньше времени двойного пробега ударной волны вдоль трубопровода .

При  возникает не прямой гидравлический удар, при котором ударная волна, отразившись от резервуара, возвращается к крану раньше, чем он будет полностью закрыт. Повышение давления Δ р при этом будет меньше, чем при прямом ударе, и оно может быть найдено по формуле , где t – время закрытия запорного устройства. Резкое повышение давления при гидравлическом ударе представляет собой весьма опасное явление. Наиболее эффективным методом снижения Δ р является устранение возможности прямого гидравлического удара, что при заданной длине трубопровода сводится к увеличению времени закрытия или открытия запорной или регулирующей аппаратуры. Гидравлический удар, рассматриваемый ранее, характеризующийся повышением давления, носит названии положительного удара.

Гидравлический удар также может иметь место и при быстром открытии задвижки на напорном трубопроводе. В этом случае происходит значительное понижение давления в трубопроводе в результате резкого увеличения скорости. Такой гидравлический удар, характеризующийся понижением давления, носит название отрицательного удара.

Сифонный трубопровод

Сифонным трубопроводом (сифоном) называется самотечный трубопровод, часть которого располагается выше уровня в сосуде (резервуаре), из которого происходит подача жидкости, рис. 10.1

Сифонные трубопроводы используют, например, в качестве водосбросов гидротехнических сооружений, для слива нефтепродуктов из цистерн, опорожнения водоемов через возвышенности, при самотечном соединении колодцев в системах водоснабжения и т. д.

Для того, чтобы сифон начал работать, необходимо заполнить его жидкостью, удалив воздух. Этого можно достичь путем отсасывания воздуха в наивысшей точке сифона или заперев концы сифона, залить его жидкостью через верхнюю точку, где одновременно удаляют воздух. После сплошного заполнения сифона жидкостью он начинает работать как обыкновенная труба, поэтому расчет сифонного трубопровода принципиально ничем не отличается от расчета простого трубопровода. Если составить уравнение Бернулли для сечений 1 – 1 и 2 – 2 взяв за 0 – 0 плоскость отсчета и считать, что в резервуарах жидкость покоится, то получим

(10.1)

Уравнение (10.1) может быть решено относительно неизвестных H, Q и d, т. е. сифонный трубопровод может быть рассчитан в любой постановке задачи.

Вместе с тем в расчете сифона есть и некоторая специфика. Очевидно, что жидкость движется по причине существования запаса потенциальной энергии за счет разности уровней Н; в то же время ясно, что при данной разности Н жидкость не может подняться неограниченно высоко в сифонной трубе. При расчетах необходимо дополнительно убедиться, не возникнет ли чрезмерный вакуум и не вызовет ли он вскипания жидкости, что нарушит работу сифона. Для этого составим уравнение Бернулли для сечений 1 – 1 и х – х, рис. 10.1. Относительно плоскости 0 - 0 получим

(10.2)
.

Принимая V1=0 перепишем последнее уравнение в виде

(10.3)
.

Величина в левой части (10.3) представляет собой вакуум

(10.4)
,

где V – средняя скорость жидкости в сифоне,

zX – высота сечения с давлением pХ над уровнем жидкости в резервуаре 1,

lX – длина части сифонной трубы от начала до сечения х – х.

Из уравнения (10.4) следует, что hвак будет тем больше, чем больше zX, скорость V и потери напора; предельным местоположением сечения х – х будет наивысшее сечение трубы.

Теоретически для нормальной работы сифонного трубопровода необходимо, чтобы минимальное давление в нем было всегда больше упругости паров жидкости при данной температуре

(10.2)
,

где pmin – минимальное давление в сифоне,

 ρ – плотность жидкости,

 At – упругость паров жидкости в м. ст. жидкости.

При расчетах рекомендуется назначить величину минимального давления значительно больше, во всяком случае для воды не менее 0, 2 – 0, 3 ат при нормальных температурных условиях. Этому значению соответствует наибольшая возможная высота расположения наивысшей точки сифона над свободной поверхностью жидкости в верхнем сосуде, равная примерно 7 м. Для того, чтобы избежать нарушения работы сифона надо либо уменьшить z, либо ввести дополнительные гидравлические сопротивления на нисходящем участке (ниже сечения х – х).

Задача 10.1 На рисунке 10.2 изображен сифонный трубопровод. Определить, где находится точка с наибольшим вакуумом (критическая точка) и подтвердить это расчетом. Давление на свободных поверхностях атмосферное, труба на участке АВ горизонтальная.


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 240; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.)
Главная | Случайная страница | Обратная связь