Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


КАВЕРНОМЕТРИЯ И ПРОФИЛЕМЕТРИЯ



 

19.1 Изучение геометрии ствола скважины проводят по результатам измерения нескольких диаметров (не менее двух) во взаимно перпендикулярных плоскостях — профилеметрия ствола, а также и среднего диаметра скважины — кавернометрия (ДС) Измеряемая величина — диаметр скважины в миллиметрах (мм).

Различают - вертикальную профилеметрию, при которой проводят регистрацию изменения формы и размера поперечного сечения скважины по стволу, и горизонтальную профилеметрию (профилографию), при которой фиксируют данные о форме и размерах одного поперечного сечения скважины.

Данные о фактическом диаметре скважины необходимы для решения следующих задач:

- оценки прихватоопасности желобов, сальников, глинистых и шламовых корок, интервалов выкрашивания и вывала пород;

- учета геометрии ствола при аварийных работах, связанных с извлечением из открытого ствола посторонних предметов;

- выбора интервалов установки пакеров испытателя пластов, испытателей на кабеле и сверлящего керноотборника на кабеле;

- выбора интервалов для установки башмака, центраторов и турбулизаторов обсадной колонны;

- определения объема затрубного пространства для расчета количества тампонажной смеси; уточнения геологического разреза, в том числе выделения коллекторов по появлению глинистых корок;

- учета диаметра ствола при интерпретации данных БКЗ, БК, ГК, НК и др. методов.

Исследованию кавернометрией-профилеметрией подлежат все скважины без исключения.

19.2 Требования к каверномерам и профилемерам:

- диапазон измерения диаметров скважины каверномером — от 100 до 800 мм;

- диайазон измерения радиусов профилемером — от 25 до 400 мм;

- предел допускаемой основной погрешности каверномера — не более ±3 мм в диапазоне до 400 мм и не более ±5 мм в диапазоне от 400 до 800 мм;

- предел допускаемой основной погрешности профилемера — не более ±2 мм;

- дополнительная погрешность, вызванная изменением напряжения питания, — не более 0, 2 значения основной погрешности;

- дополнительная погрешность, вызванная изменением температуры окружающей среды, — не более 0, 1 значения основной погрешности на каждые 10 °С относительно стандартного значения, равного 20 °С;

- дополнительная погрешность, вызванная отклонением скважины от вертикали, не должна превышать 0, 5 значения основной погрешности.

19.2.1 Приборы комплексируют с другими приборами (модулями) без ограничений.

19.2.2 Минимальные требования к методическому и программному обеспечению заключаются в наличии методик и программ расчета площади, формы и объема скважины по данным профилеметрии.

19.3 Первичную, периодические и полевые калибровки ведут согласно общим требованиям раздела 6.

19.3.1 Основным средством периодических калибровок является набор из пяти образцовых колец или калибровочная установка типа УП-Кв, которые воспроизводят значения диаметров в диапазоне от 100 до 800 мм с погрешностью не более ±1, 0 мм. Допускается использование также калибровочных устройств, поставляемых заводом-изготовителем (так называемые, «гребенки»), если погрешность воспроизведения ими диаметров не превышает ±1, 0 мм.

19.3.2 В качестве средства полевой калибровки используют образцовые кольца (не менее двух) или «гребенку».

19.4 Исследования в скважинах ведут согласно требованиям раздела 6.

19.4.1 Интервал контрольной записи должен включать участок протяженностью не менее 50 м перед входом в обсадную колонну и не менее 20 м в колонне.

19.4.2 Для приборов однократного раскрытия повторную запись не проводят; контрольную запись выполняют согласно предыдущему разделу.

19.5 Основные положения контроля качества измерений регламентируются разделом 6. Дополнительные требования:

19.5.1 Расхождения кривых основной и повторной записей не должны превышать ±5 мм

19.5.2 Расхождения измеренных и проектных диаметров колонны и скважины в интервалах с номинальным диаметром ствола не должны превышать ±3 мм.

19.6 Первичная обработка включает придание кавернограммам и профилеграммам физических масштабов, построение поперечных сечений скважины по результатам горизонтальной профилеметрии.

19.7 На твердых копиях результаты измерений представляют в арифметическом масштабе в треке Т1 (рис. 1).

 

ИНКЛИНОМЕТРИЯ

 

20.1 Инклинометрические исследования — это измерения зенитного угла и азимута скважины в функции ее глубины. Единица измерения — градус. Сокращение — Инкл.

Инклинометрические исследования проводят при подъеме скважинного прибора в вертикальных скважинах глубиной свыше 300 м и в наклонных скважинах глубиной свыше 100 м для решения задач:

- контроля заданного направления оси ствола скважины в пространстве проектному в процессе бурения;

- выделения участков перегибов оси ствола скважины, которые могут вызывать осложнения при бурении;

- получения исходных данных для геологических построений, в том числе определения истинных глубин залегания продуктивных пластов, для интерпретации данных магнитного каротажа и пластовой наклонометрии.

Исследования выполняют магнитными (точечными и непрерывными) в необсаженных скважинах и гироскопическими инклинометрами в необсаженных и обсаженных скважинах.

20.2 Требования к инклинометрам для исследования необсаженных скважин:

- диапазон измерения азимута - от 0 до 360°;

- границы диапазонов измерения зенитного угла — от 0 до 45, 90, 135, 180°;

- диапазон измерения апсидального угла — от 0 до 360°;

- допускаемая основная погрешность измерения азимута для зенитных углов более 3° - не более ± 2°;

- допускаемая основная погрешность измерения зенитного угла — не более ± 0, 5°;

- дополнительная погрешность, вызванная изменением напряжения питания, — не более 0, 2 значения основной погрешности;

- дополнительная погрешность, вызванная изменением температуры окружающей среды, не должна превышать 0, 1 значения основной погрешности на каждые 10 °С относительно стандартного значения температуры, равного 20 °С.

20.2.1 Требования к методическому обеспечению заключаются в наличии программ расчета:

- координат оси скважины;

- абсолютных отметок глубин;

- приращений (удлинений) длины ствола;

- величины и направления смещения забоя скважины относительно устья;

- характеристик рассеяния (неопределенности) координат.

20.3 Первичную, периодические и полевые калибровки проводят согласно общим требованиям раздела 6.

20.3.1 Периодические калибровки выполняют соответственно требованиям МУ 41-17-1373-87 «Отраслевая система обеспечения единства измерений. Инклинометры и ориентаторы. Методика поверки». Основным средством калибровки служат установки УКИ-2, УПИ-1, УПИ-3.

20.3.2 При использовании инклинометров, не подпадающих под действие МУ 41-17-1373-87, их периодическую калибровку проводят в соответствии с методическими указаниями, регламентированными эксплуатационной документацией.

20.3.3 Полевую калибровку инклинометров проводят непосредственно перед скважинными измерениями и после них, используя угломер-квадрант УК-2 и буссоль БГ-1 (или БШ).

20.4 Общие требования к проведению измерений определены в разделе 6. Дополнительные требования различны для инклинометров разных типов.

Измерения точечными магнитными инклинометрами проводят в открытом стволе или в легкосплавных бурильных трубах (ЛБТ) при подъеме скважинного прибора. Как исключение, допускаются измерения зенитных углов в стальных бурильных трубах пли в обсадной колонне.

20.4.1 Измерения в точках проводят через 10 с после полной остановки прибора.

20.4.2 Если интервал исследований находится существенно выше забоя скважины, то первое измерение выполняют на глубине пяти метров ниже заданного интервала, последующие — через 2-3 м, затем переходят к измерениям с принятым шагом

Если исследования начинают от забоя скважины, то первое измерение выполняют на глубине 5 м выше него, после чего переходят к измерениям в точках глубин, кратных шагу измерений.

20.4.3 Шаг измерений в открытом стволе должен быть равен 25 м в вертикальных скважинах с зенитными углами до 5°; 10м — в скважинах с углами выше 5°; 5 м — в скважинах с интенсивностью искривления до 0, 5°/м; 2 м — на участках с интенсивностью искривления 0, 5°/м и более.

Шаг измерений в ЛБТ (зенитных углов в стальной обсадной колонне) должен быть равен 40 м для зенитных углов до 5°; 20 м — при зенитных углах свыше 5° и 10 м — на участках с принудительным искривлением.

20.4.4 Измерения в ЛБТ проводят на расстоянии не менее 15 м от стальной колонны и турбобура и более 3 м от стальных замковых соединений.

20.4.5 Повторные измерения выполняют в каждой пятой точке.

20.4.6 Измерения, выполняемые после углубления скважины, необходимо проводить другим инклинометром с перекрытием интервала предыдущих измерений не менее чем в трех точках подряд, если зенитные углы меньше 5°, и в пяти точках при больших значениях зенитных углов.

В наклонно направленных скважинах со спущенными ЛБТ в интервале набора кривизны повторными измерениями перекрывают не менее трех точек подряд, из которых хотя бы в одной должен быть измерен азимут.

20.5 Спуск в интервал измерений приборов непрерывной инклинометрии осуществляют со скоростью согласно п. 6.3.6. Не менее чем за 20-30 м до глубины начала скважинных измерений скорость спуска снижают до 800 м/ч. После остановки прибора его выдерживают неподвижным в течение 30 с.

20.5.1 Перед началом измерений осуществляют привязку инклинометра к глубине.

20.5.2 Измерения начинают, плавно увеличивая скорость подъемf прибора до 800 м/ч без рывков и резких торможений.

20.5 3 Регистрацию глубин осуществляют с разрешающей способностью не хуже ±0, 1 м, скорости движения - не хуже ±1 м/ч.

20.5.4 При использовании магнитных инклинометров регистрацию азимута необходимо отключить за 20 м до входа в обсадную колонну.

20.6 Технология проведения скважинных исследований гироскопическим инклинометром выполняется в соответствии с эксплуатационной документацией на конкретный тип инклинометра и делится на два этапа — определение географического меридиана и замер траектории ствола скважины.

20.6.1 Скважинный прибор, соединенный геофизическим кабелем с наземным блоком, фиксируют на устье с помощью специального фланца, который обеспечивает установку инклинометра в вертикальном положении с точностью не хуже ±0, 3° и возможностью его разворота по апсидальному углу.

Проводят предварительную выставку (определение географического меридиана), после окончания которой производят разворот корпуса инклинометра по апсидальному углу и добиваются установки вертикального положения до требуемой величины.

Затем повторяют процедуру начальной выставки до получения стабильного результата. Данная процедура продолжается 40-60 минут.

20.6.2 После окончания операции «выставки гироскопического инклинометра», инклинометр освобождают и останавливают на нулевой отметке глубины скважины и начинают автономную работу согласно эксплуатационной документации.

Измерение траектории ствола осуществляется при спуске и подъеме прибора непрерывно или точках. Скорость записи — до 5000 м/ч (при условии предварительного шаблонирования скважины перед измерениями). Основной замер траектории осуществляется на спуске; на подъеме — осуществляют контроль проведенных измерений.

Рекомендуется прохождение интервалов перфорации со скоростью 750-1500 м/ч В целях снижения вероятности удара инклинометра об забой рекомендуется не доходить до него на 5-10 м. Стоянка на забое не более 20 с. Отрыв от забоя должен проводиться с минимально возможной скоростью.

В процессе замера траектории ствола скважины для компенсации дрейфа гироскопа необходимо проводить во время спуска и подъема технологические остановки. Методика и условия выполнения остановок регламентируется требованиями эксплуатационной документации.

20.6.3 При последующем измерении, выполняемом после углубления скважины, интервал предыдущих измерений перекрывают согласно требованиям п. 20.4.5.

20.7 Основные положения контроля качества измерений регламентируются разделом 6.

20.7.1 Критерием точности инклинометрических измерений является значение средней квадратической погрешности, вычисляемое по разностям двойных измерений, которое не должно превышать значения основной погрешности инклинометра:

,

где d — средняя квадратическая погрешность измерений углов; diразность двойных измерений угла в i-ой точке; п — число двойных измерений.

20.7.2 В процессе измерений точечным магнитным инклинометром текущий контроль осуществляют определением абсолютной разности между результатами основного и повторного измерений, которые не должны превышать удвоенное значение основной погрешности инклинометра.

Если значения разности превышают значение основной погрешности не более чем в двух точках, то число точек перекрытия увеличивают на две. Если после этого общее число точек с увеличенными значениями разности составляет три и более, то перекрытию подлежат все точки предыдущего интервала измерений.

20.7.3 Для непрерывной инклинометрии получают результирующий протокол замера кривизны, проекции скважины на три ортогональные плоскости или изометрическую проекцию, графики функциональных зависимостей азимута, зенитного угла и угла поворота (установки отклонителя) с помощью программного обеспечения обработки результатов, разработанного для конкретного типа инклинометра.

20.7.4 Для получения достоверных координат траектории ствола скважины, которая имеет протяженный (более 200 м) вертикальный участок (зенитные углы не более 3°) рекомендуется проверять гироскопическим инклинометром данные, полученные с помощью магнитных инклинометров.

20.8 Обработка и оформление результатов измерений различны для точечных и непрерывных магнитных и гироскопических инклинометров. Алгоритмы обработки определяются программным обеспечением. Регламентируемыми документами являются:

- сводная таблица результатов инклинометрических измерений (значения зенитных и азимутальных углов) с заданным шагом по глубине. Для точек с многократными измерениями принимают средние значения из результатов всех измерений;

- координаты X, Y и Z точек оси ствола скважины в системе координат с началом в центре ротора и осями, параллельными осям геодезической сети, план и профиль ствола скважины. Положительные направления координатных осей принимают следующими: ось X — северное; ось Y — восточное; ось Z — вниз.

Координаты точек вычисляют по дирекционным углам, для чего в измеренные магнитные азимуты вводят поправки на магнитное склонение и сближение меридианов. При вычислении координат используют формулы (или формулы, учитывающие изменения углов и азимутов по глубине):

;

;

где Хп, Yn, Znкоординаты определяемой точки; li — шаг измерений между точками i-1 и i; qi-1, qi — зенитные углы в точках i-1 и i; ai-1, ai — дирекционные углы точек i-1 и i, п - количество точек.

20.9 Материалы, передаваемые недропользователю, должны содержать: сводную таблицу результатов инклинометрических измерений, а для наклонно направленных скважин — дополнительно план и профиль ствола скважины.

На плане скважины показывают: направление координатных осей; масштаб; положение устья скважины; проектное и фактическое положение забоя; смещение забоя; дирекционный угол или азимут направления «устье-забой»; расстояние в плане между фактическим и проектным положениями забоя. На профиле скважины показывают: направление координатной оси Z; масштаб; дирекционный угол или азимут вертикальной плоскости, на которую проецируется ось скважины.

 

ПЛАСТОВАЯ НАКЛОНОМЕТРИЯ

 

21.1 Пластовая наклонометрия — вид каротажа, предназначенный для определения элементов залегания пород в разрезе скважины.

Результаты пластовой наклонометрии применяют для выделения и определения толщин и элементов залегания (углов и азимутов падения) пластов горных пород с различными литологическими и фильтрационно-емкостными характеристиками, фациального анализа и прогнозирования на этой основе структурных и комбинированных ловушек, оценки достоверности результатов сейсморазведки и выбора мест заложения скважин.

21.1.1 Пластовая наклонометрия может быть реализована в двух модификациях: на основе измерения направления геофизических полей, например электромагнитных (определенными возможностями располагает метод индукционной наклонометрии); на основе реализации метода координат.

Пластовая наклонометрия по методу координат основана на определении ориентации тонкого прослоя по координатам трех или большего числа точек, соответствующих сечению прослоя скважиной, и реализуется путем измерений прижимными датчиками, перемещающимися по нескольким различным образующим стенки скважины в плоскости, перпендикулярной оси скважины. В качестве датчиков используют микрозонды или боковые микрозонды, как наиболее эффективные по простоте, надежности, разрешающей способности, диапазону измеряемых характеристик и скорости измерения.

21.1.2 Радиусы скважины, измеряемые одновременно с электрическими характеристиками пород, также используют для определения элементов залегания пород (способ механической наклонометрии) при условиях: погрешность изменения радиусов – не более первых долей мм; по результатам опробования конкретного прибора установлена сходимость результатов электрической и механической наклонометрии.

21.1.3 Ограничения метода — общие для прижимных скважинных приборов. Скорость проведения исследований — не более 800 м/ч.

21.2 Аппаратура (наземная панель и скважинный прибор) пластовой наклонометрии должна удовлетворять общим требованиям к приборам для исследования открытого ствола скважин и обеспечивать возможность измерения (или расчета по результатам измерений) параметров, характеризующих пространственное положение пластов.

21.2.1 Комплекс измеряемых и расчетных параметров пластовой наклонометрии должен включать характеристики пород и ствола скважины по глубине:

- электрические характеристики пород в прискважинной зоне — значения кажущегося удельного электрического сопротивления rк, вычисленные по измеренным потенциалу или току каждого датчика; азимутальное распределение кажущегося УЭС прискважинной зоны; интегральное значение кажущегося УЭС на данной глубине;

- элементы залегания пластов — угол и азимут падения, которые рассчитывают с учетом данных о кривизне скважины;

- элементы кривизны скважины — угол и азимут наклона, рассчитанные по ортогональным составляющим угла наклона и вектора магнитного поля Земли;

- характеристики ствола скважины — радиусы по каждому направлению;

- ориентированную форму сечения скважины на данной глубине.

21.2.2 Обязательные требования к скважинному прибору:

- наличие не менее четырех прижимных датчиков;

- измерение каждым датчиком не менее двух характеристик — электрической (кажущееся сопротивление, потенциал или сила тока) и механической (радиус скважины);

- наличие инклинометрического блока (датчики угла и азимута);

- согласованные по текущему времени измерения всеми датчиками;

- конструкция датчиков должна обеспечивать измерения кажущихся удельных сопротивлений в диапазоне от 0, 5 до 150 Ом·м при изменении УЭС промывочной жидкости от 0, 05 до 5 Ом·м;

- требования к датчикам МК, БМК, инклинометрии такие же, как для отдельно применяющихся приборов (модулей) этих методов (подразделы 14.4, 14.8, и раздел 20).

21.2.3 Дополнительные рекомендуемые требования: наличие акселерометрического блока с датчиком линейного ускорения для введения поправок за неравномерность движения скважинного прибора; чувствительность датчиков к изменению радиуса — не более первых долей мм.

21.2.4 Минимальные требования к методическому обеспечению: программная реализация построения корреляций между кривыми микрозондов; расчет элементов залегания пород по методу координат.

21.2.5 Целесообразно аппаратурное или методическое комплексирование пластовой наклонометрии с электрическими сканерами.

21.3 Калибровки аппаратуры, скважинные измерения и контроль качества материалов проводятся в соответствии с требованиями эксплуатационной документации на конкретный тип аппаратуры.

21.4 Форма представления данных на твердых копиях не регламентируется. Обязательно представление следующих результатов:

- кривых измерений всеми электрическими микрозондами с нанесенными линиями основных корреляций;

- кривых профилей скважины по данным измерения радиусов;

- инклинограммы (угол и азимут кривизны скважины);

- наклонограммы (углы и азимуты падения поверхностей раздела пластов по выделенным корреляциям);

- обобщенных углов и азимутов падения для отдельных пластов.

На твердых копиях могут быть представлены другие результаты (ориентированные формы сечения скважины, схемы ориентированного положения микрозондов при измерениях, гистограммы, розы-диаграммы и др.).

 

ТЕРМОМЕТРИЯ

 

22.1 Метод заключается в изучении естественных и искусственных тепловых полей в скважине в установившемся и неустановившемся режимах. Измеряемая величина — температура (разность температур) — в градусах Цельсия (°С). Сокращение - Т или Терм.

Измерение естественных полей выполняют:

- в установившемся режиме с целью определения естественной температуры пород, геотермического градиента, геотермической ступени;

- в неустановившемся режиме для сопровождения бурения и каротажа — определения температурного режима работы бурового инструмента и скважинных приборов;

- получения информации для учета температуры при интерпретации данных каротажа.

Разница полей, измеренных на этих режимах, зависит от времени пребывания скважины в покое. Она тем больше, чем меньший промежуток времени прошел после прекращения циркуляции промывочной жидкости в стволе скважины и других тепловых воздействий — заколонных перетоков, дросселирования нефти, газа и воды, прохождения фронта вод, закачиваемых в пласт, и т.д.

Измерения искусственных полей ведут для:

- оценки технического состояния обсаженных скважин — определения высоты подъема цемента; выделения интервалов затрубных перетоков; контроля интервалов перфорации; исследований герметичности обсадных колонн и фонтанных труб;

- сопровождения процесса эксплуатации скважин в комплексе с другими методами определения «притока-состава» — выделения интервалов и профилей притоков и приемистости; установления обводненных интервалов в добывающих скважинах; прослеживания температурного фронта закачиваемых вод; исследования нагнетательных скважин; определения интервалов внутриколонных перетоков; контроля за внутрипластовым горением, паротепловым воздействием и термозаводнением.

Результаты измерений, в том числе естественных полей, полученные в установившемся режиме, используют при этом в качестве фоновых наблюдений.

22.2 В зависимости от измеряемой величины различают модификации метода: обычную термометрию («термометрия»), при которой измеряют температуру, и дифференциальную термометрию, когда измеряют разность температур.

Дифференциальную термометрию подразделяют на аномалий-термометрию (измерение отклонений температуры DT от некоторого среднего значения) и градиент-термометрию (измерение разности температур двух датчиков, разнесенных на фиксированное расстояние).

22.3 Для измерения температуры применяют термометр сопротивления, спускаемый на геофизическом кабеле, максимальный ртутный термометр и глубинный самопишущий термометр, опускаемые на бурильных трубах в составе ИПТ.

Термометр сопротивления комплексируют с приборами остальных методов ГИС. Он является частью технологического блока в сборках модулей.

22.4 Термометр сопротивления должен удовлетворять следующим требованиям:

- разрешающая способность — не хуже 0, 01 °С (для отдельных модификаций приборов — 0, 1- 0, 3 °С);

- основная погрешность измерения температур в заданном диапазоне измерений — не более ±2 %;

- постоянная времени — не более 2 с;

- сопротивление чувствительного элемента мостикового термометра — не более 2000 Ом;

- дополнительная погрешность измерения за счет нагревания чувствительного элемента проходящим через него током — не более половины допустимой погрешности;

- сопротивление изоляции жил кабеля при работе с термометром — не менее 2 МОм.

22.5 Первичную, периодические и полевые калибровки ведут согласно общим требованиям раздела 6. Калибровки выполняют, руководствуясь эксплуатационной документацией для конкретного типа скважинного прибора.

22.5.1 Контролируемыми параметрами являются постоянная времени и постоянная термометра, соответствующая изменению выходного напряжения на 1 °С.

22.5.2 Основным средством периодических калибровок являются баки с водой различной температуры; температуру воды устанавливают с помощью образцовых термометров.

22.6 Исследования в скважинах ведут, руководствуясь следующими требованиями:

22.6.1 Перед спуском прибора в скважину измеряют температуру окружающей среды (допускается измерение температуры воздуха в станции) одновременно скважинным термометром и ртутным. Разница в показаниях обоих термометров не должна превышать ±0, 5 °С.

22.6.2 Примерная скорость каротажа должна составлять 1000; 800; 600 и 400 м/ч, если постоянная времени равна 0, 5; 1; 2 и 4 с соответственно.

Для регистрации аномалий температур, имеющих небольшую протяженность по глубине, скорость каротажа рассчитывают как

,

где Т0порог чувствительности термометра, G — градиент температуры в скважине (для естественного поля — геотермический градиент Г), tд — динамическая тепловая инерция, которая в 1, 5-2, 5 раза больше паспортного значения постоянной времени t.

Минимальная толщина hmin прослоя в метрах, для которой аномалия температуры максимально близка к истинной, определяется выражением

.

Если значение аномалии устанавливают с точностью 99, 9; 99, 5; 99; 95 и 90 %, то коэффициент п равен соответственно 6, 9; 5, 3; 4, 6; 3 и 2, 3.

22.6.3 Геотермические исследования проводят только на спуске прибора после пребывания скважины в покое не менее 10 суток. Более точный промежуток времени устанавливают для района опытным путем; реально он может составлять от нескольких месяцев до нескольких лет. В скважине не должно быть перелива, газопроявлений, затрубного движения.

При определении естественной температуры необходимо: провести на ряде глубин измерения при неподвижном термометре; выполнить не менее двух повторных измерений по всему стволу с интервалом времени между ними не менее суток; в обоих вариантах разница показаний не должна превышать +1 °С.

22.6.4 Измерения текущей температуры в скважине для определения температурного режима работы бурильного инструмента и скважинных приборов проводят при спуске и подъеме термометра.

При определении мест поглощения в открытом стволе выполняют серию разновременных измерений. Локализацию интервалов интенсивных поглощений проводят по характерным аномалиям температуры.

22.6.5 Измерения температуры для оценки технического состояния обсаженных скважин выполняют при спуске скважинного прибора, повторное измерение — при его подъеме.

22.6.5.1 Для определения высоты подъема цемента за обсадной колонной измерения проводят от устья до забоя скважины после затвердевания цемента, но не позже чем через двое суток после цементирования колонны для нормально схватывающихся цементов и через 15-20 ч для быстросхватывающихся цементов. Оптимальное время исследований для нормально схватывающихся цементов — через 15-30 ч после окончания заливки.

Запрещается проведение любых работ в скважине перед измерениями во избежание нарушения температурного режима.

При применении нестандартных цементных растворов, а также в случае выполнения работ по специальным программам рекомендуется проводить временные измерения термометром в период схватывания и затвердевания цементной смеси через каждые 2-3 ч в течение 1-2 суток после окончания заливки.

Эффективность определения высоты подъема цемента по температурной аномалии снижается в высокотемпературных скважинах, при использовании низкосортных цементов (глино- и гельцементы), в случае загрязнения цементного раствора или односторонней заливки.

22.6.5.2 Для определения интервалов перфорации измерения проводят на спуске и подъеме прибора непосредственно после перфорации, захватывая выше интервала перфорации участок глубин протяженностью не менее 50 м. Температурная аномалия, образованная горением зарядов перфоратора, расплывается в течение 1-2 суток. Эффективность выделения максимальна для бескорпусных перфораторов.

22.6.5.3 При определении мест негерметичности обсадных колонн и пифтовых труб термометрию комплексируют с другими видами измерений комплекса «приток-состав» (ПГИ, ГИС-контроль).

В случае хорошей приемистости скважины регистрируют термограммы в процессе закачки в нее воды под давлением, в случае низкой приемистости — после снижения уровня жидкости в скважине. Выполняют не менее двух измерений: в остановленной скважине (контрольное); после закачки воды в скважину или снижения в ней уровня.

22.6.6 Измерения в эксплуатационных скважинах ведут одновременно с измерениями данных другими методами ПГИ. Последовательность операций определяется требованиями раздела 12. Дополнительные требования следующие:

22.6.6.1 Применение термометров с порогом чувствительности не хуже 0, 01 °С обязательно при решении задач:

- выделения интервалов притоков и приемистости;

- определения местоположений отдающих пластов и установления обводненных интервалов в добывающих скважинах;

- прослеживания температурного фронта закачиваемых вод.

22.6.6.2 Применение термометров с порогом чувствительности 0, 1-0, 3 °С допускается при решении задач:

- исследования нагнетательных скважин;

- определения интервалов интенсивных перетоков,

- выделения мест нарушения эксплуатационных колонн и лифтовых труб;

- контроля за внутрипластовым горением, паротепловым воздействием и термозаводнением.

22.6.6.3 Обязательна выдержка скважины перед выполнением фонового замера не менее одних суток после приостановления работ, связанных с промывкой скважины.

22.6.6.4 В режиме притока регистрируют несколько термограмм (не менее трех), первую непосредственно после вызова притока, вторую - через 1, 5 ч после первой, затем через 2-3 ч проводят следующие замеры. Общее время наблюдений за формированием температурной аномалии дроссельного эффекта зависит от дебита скважины и должно быть не менее 10 ч при дебите более 10 м3/сут и не менее 20 ч при меньших дебитах.

22.7 Основные положения контроля качества измерении, оформления данных, формирования файлов недропользователя регламентируются разделом 6.

22.8 На твердых копиях результаты измерений представляют в треках Т2-Т3 (рис.1) в масштабе, выбранном в зависимости от решаемой задачи и диапазона изменения температуры. Увеличению температуры должно соответствовать смещение кривой вправо.

 


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 968; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.08 с.)
Главная | Случайная страница | Обратная связь