Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Разработка перегруженных операторов



Операторы присваивания, взятия адреса и оператор “запятая” имеют предопределенный смысл, если операндами являются объекты типа класса. Но их можно и перегружать. Семантика всех остальных операторов, когда они применяются к таким операндам, должна быть явно задана разработчиком. Выбор предоставляемых операторов зависит от ожидаемого использования класса.

Начинать следует с определения его открытого интерфейса. Набор открытых функций-членов формируется с учетом операций, которые класс должен предоставлять пользователям. Затем принимается решение, какие функции стоит реализовать в виде перегруженных операторов.

После определения открытого интерфейса класса проверьте, есть ли логическое соответствие между операциями и операторами:

· isEmpty() становится оператором “ЛОГИЧЕСКОЕ НЕ”, operator! ().

· isEqual() становится оператором равенства, operator==().

· copy() становится оператором присваивания, operator=().

У каждого оператора есть некоторая естественная семантика. Так, бинарный + всегда ассоциируется со сложением, а его отображение на аналогичную операцию с классом может оказаться удобной и краткой нотацией. Например, для матричного типа сложение двух матриц является вполне подходящим расширением бинарного плюса.

Примером неправильного использования перегрузки операторов является определение operator+() как операции вычитания, что бессмысленно: не согласующаяся с интуицией семантика опасна.

Такой оператор одинаково хорошо поддерживает несколько различных интерпретаций. Безупречно четкое и обоснованное объяснение того, что делает operator+(), вряд ли устроит пользователей класса String, полагающих, что он служит для конкатенации строк. Если семантика перегруженного оператора неочевидна, то лучше его не предоставлять.

Эквивалентность семантики составного оператора и соответствующей последовательности простых операторов для встроенных типов (например, эквивалентность оператора +, за которым следует =, и составного оператора +=) должна быть явно поддержана и для класса. Предположим, для String определены как operator+(), так и operator=() для поддержки операций конкатенации и почленного копирования:

String s1( " C" );

String s2( " ++" );

 

s1 = s1 + s2; // s1 == " C++"

Но этого недостаточно для поддержки составного оператора присваивания

s1 += s2;

Его следует определить явно, так, чтобы он поддерживал ожидаемую семантику.

Упражнение 15.1

Почему при выполнении следующего сравнения не вызывается перегруженный оператор operator==(const String&, const String& ):

" cobble" == " stone"

Упражнение 15.2

Напишите перегруженные операторы неравенства, которые могут быть использованы в таких сравнениях:

String! = String

String! = С-строка

C-строка! = String

Объясните, почему вы решили реализовать один или несколько операторов.

Упражнение 15.3

Выявите те функции-члены класса Screen, реализованного в главе 13 (разделы 13.3, 13.4 и 13.6), которые можно перегружать.

Упражнение 15.4

Объясните, почему перегруженные операторы ввода и вывода, определенные для класса String из раздела 3.15, объявлены как глобальные функции, а не функции-члены.

Упражнение 15.5

Реализуйте перегруженные операторы ввода и вывода для класса Screen из главы 13.

Друзья

Рассмотрим еще раз перегруженные операторы равенства для класса String, определенные в области видимости пространства имен. Оператор равенства для двух объектов String выглядит следующим образом:

bool operator==( const String & str1, const String & str2 )

{

if ( str1.size()! = str2.size() )

return false;

return strcmp( str1.c_str(), str2.c_str() )? false: true;

}

Сравните это определение с определением того же оператора как функции-члена:

bool String:: operator==( const String & rhs ) const

{

if ( _size! = rhs._size )

return false;

return strcmp( _string, rhs._string )? false: true;

}

Нам пришлось модифицировать способ обращения к закрытым членам класса String. Поскольку новый оператор равенства – это глобальная функция, а не функция-член, у него нет доступа к закрытым членам класса String. Для получения размера объекта String и лежащей в его основе C-строки символов используются функции-члены size() и c_str().

Альтернативной реализацией является объявление глобальных операторов равенства друзьями класса String. Если функция или оператор объявлены таким образом, им предоставляется доступ к неоткрытым членам.

Объявление друга (оно начинается с ключевого слова friend) встречается только внутри определения класса. Поскольку друзья не являются членами класса, объявляющего дружественные отношения, то безразлично, в какой из секций – public, private или protected – они объявлены. В примере ниже мы решили поместить все подобные объявления сразу после заголовка класса:

class String {

friend bool operator==( const String &, const String & );

friend bool operator==( const char *, const String & );

friend bool operator==( const String &, const char * );

public:

//... остальная часть класса String

};

В этих трех строчках три перегруженных оператора сравнения, принадлежащие глобальной области видимости, объявляются друзьями класса String, а следовательно, в их определениях можно напрямую обращаться к закрытым членам данного класса:

// дружественные операторы напрямую обращаются к закрытым членам

// класса String

bool operator==( const String & str1, const String & str2 )

{

if ( str1._size! = str2._size )

return false;

return strcmp( str1._string, str2._string )? false: true;

}

inline bool operator==( const String & str, const char *s )

{

return strcmp( str._string, s )? false: true;

}

// и т.д.

Можно возразить, что в данном случае прямой доступ к членам _size и _string необязателен, так как встроенные функции c_str() и size() столь же эффективны и при этом сохраняют инкапсуляцию, а значит, нет особой нужды объявлять операторы равенства для класса String его друзьями.

Как узнать, следует ли сделать оператор, не являющийся членом класса, его другом или воспользоваться функциями доступа? В общем случае разработчик должен сократить до минимума число объявленных функций и операторов, которые имеют доступ к внутреннему представлению класса. Если имеются функции доступа, обеспечивающие равную эффективность, то предпочтение следует отдать им, тем самым изолируя операторы в пространстве имен от изменений представления класса, как это делается и для других функций. Если же разработчик класса не предоставляет функций доступа для некоторых членов, а объявленный в пространстве имен оператор должен к этим членам обращаться, то использование механизма друзей становится неизбежным.

Наиболее часто такой механизм применяется для того, чтобы разрешить перегруженным операторам, не являющимся членами класса, доступ к его закрытым членам. Если бы не необходимость обеспечить симметрию левого и правого операндов, то перегруженный оператор был бы функцией-членом с полными правами доступа.

Хотя объявления друзей обычно употребляются по отношению к операторам, бывают случаи, когда функцию в пространстве имен, функцию-член другого класса или даже целый класс приходится объявлять таким образом. Если один класс объявлен другом второго, то все функции-члены первого класса получают доступ к неоткрытым членам другого. Рассмотрим это на примере функций, не являющихся операторами.

Класс должен объявлять другом каждую из множества перегруженных функций, которой он хочет дать неограниченные права доступа:

extern ostream& storeOn( ostream &, Screen & );

extern BitMap& storeOn( BitMap &, Screen & );

//...

 

class Screen

{

friend ostream& storeOn( ostream &, Screen & );

friend BitMap& storeOn( BitMap &, Screen & );

//...

};

Если функция манипулирует объектами двух разных классов и ей нужен доступ к их неоткрытым членам, то такую функцию можно либо объявить другом обоих классов, либо сделать членом одного и другом второго.

Объявление функции другом двух классов должно выглядеть так:

class Window; // это всего лишь объявление

class Screen {

friend bool is_equal( Screen &, Window & );

//...

};

 

class Window {

friend bool is_equal( Screen &, Window & );

//...

};

Если же мы решили сделать функцию членом одного класса и другом второго, то объявления будут построены следующим образом:

class Window;

class Screen {

// copy() - член класса Screen

Screen& copy( Window & );

//...

};

 

class Window {

// Screen:: copy() - друг класса Window

friend Screen& Screen:: copy( Window & );

//...

};

 

Screen& Screen:: copy( Window & ) { /*... */ }

Функция-член одного класса не может быть объявлена другом второго, пока компилятор не увидел определения ее собственного класса. Это не всегда возможно. Предположим, что Screen должен объявить некоторые функции-члены Window своими друзьями, а Window – объявить таким же образом некоторые функции-члена Screen. В таком случае весь класс Window объявляется другом Screen:

class Window;

class Screen {

friend class Window;

//...

};

К закрытым членам класса Screen теперь можно обращаться из любой функции-члена Window.

Упражнение 15.6

Реализуйте операторы ввода и вывода, определенные для класса Screen в упражнении 15.5, в виде друзей и модифицируйте их определения так, чтобы они напрямую обращались к закрытым членам. Какая реализация лучше? Объясните почему.

15.3. Оператор =

Присваивание одного объекта другому объекту того же класса выполняется с помощью копирующего оператора присваивания. (Этот специальный случай был рассмотрен в разделе 14.7.)

Для класса могут быть определены и другие операторы присваивания. Если объектам класса надо присваивать значения типа, отличного от этого класса, то разрешается определить такие операторы, принимающие подобные параметры. Например, чтобы поддержать присваивание C-строки объекту String:

String car (" Volks" );

car = " Studebaker";

мы предоставляем оператор, принимающий параметр типа const char*. Эта операция уже была объявлена в нашем классе:

class String {

public:

// оператор присваивания для char*

String& operator=( const char * );

//...

private:

int _size;

char *string;

};

Такой оператор реализуется следующим образом. Если объекту String присваивается нулевой указатель, он становится “пустым”. В противном случае ему присваивается копия C-строки:

String& String:: operator=( const char *sobj )

{

// sobj - нулевой указатель

if (! sobj ) {

_size = 0;

delete[] _string;

_string = 0;

}

else {

_size = strlen( sobj );

delete[] _string;

_string = new char[ _size + 1 ];

strcpy( _string, sobj );

}

return *this;

}

_string ссылается на копию той C-строки, на которую указывает sobj. Почему на копию? Потому что непосредственно присвоить sobj члену _string нельзя:

_string = sobj; // ошибка: несоответствие типов

sobj – это указатель на const и, следовательно, не может быть присвоен указателю на “не-const” (см. раздел 3.5). Изменим определение оператора присваивания:

String& String:: operator=( const *sobj ) { //... }

Теперь _string прямо ссылается на C-строку, адресованную sobj. Однако при этом возникают другие проблемы. Напомним, что C-строка имеет тип const char*. Определение параметра как указателя на не-const делает присваивание невозможным:

car = " Studebaker"; // недопустимо с помощью operator=( char *)!

Итак, выбора нет. Чтобы присвоить C-строку объекту типа String, параметр должен иметь тип const char*.

Хранение в _string прямой ссылки на C-строку, адресуемую sobj, порождает и иные сложности. Мы не знаем, на что именно указывает sobj. Это может быть массив символов, который модифицируется способом, неизвестным объекту String. Например:

char ia[] = { 'd', 'a', 'n', 'c', 'e', 'r' };

String trap = ia; // trap._string ссылается на ia

ia[3] = 'g'; // а вот это нам не нужно:

         // модифицируется и ia, и trap._string

Если trap._string напрямую ссылался на ia, то объект trap демонстрировал бы своеобразное поведение: его значение может изменяться без вызова функций-членов класса String. Поэтому мы полагаем, что выделение области памяти для хранения копии значения C-строки менее опасно.

Обратите внимание, что в операторе присваивания используется delete. Член _string содержит ссылку на массив символов, расположенный в хипе. Чтобы предотвратить утечку, память, выделенная под старую строку, освобождается с помощью delete до выделения памяти под новую. Поскольку _string адресует массив символов, следует использовать версию delete для массивов (см. раздел 8.4).

И последнее замечание об операторе присваивания. Тип возвращаемого им значения – это ссылка на класс String. Почему именно ссылка? Дело в том, что для встроенных типов операторы присваивания можно сцеплять:

// сцепление операторов присваивания

int iobj, jobj;

iobj = jobj = 63;

Они ассоциируются справа налево, т.е. в предыдущем примере присваивания выполняются так:

iobj = (jobj = 63);

Это удобно и при работе с объектами класса String: поддерживается, к примеру, следующая конструкция:

String ver, noun;

verb = noun = " count";

При первом присваивании из этой цепочки вызывается определенный ранее оператор для const char*. Тип полученного результата должен быть таким, чтобы его можно было использовать как аргумент для копирующего оператора присваивания класса String. Поэтому, хотя параметр данного оператора имеет тип const char *, возвращается все же ссылка на String.

Операторы присваивания бывают перегруженными. Например, в нашем классе String есть такой набор:

// набор перегруженных операторов присваивания

String& operator=( const String & );

String& operator=( const char * );

Отдельный оператор присваивания может существовать для каждого типа, который разрешено присваивать объекту String. Однако все такие операторы должны быть определены как функции-члены класса.

Оператор взятия индекса

Оператор взятия индекса operator[]() можно определять для классов, представляющих абстракцию контейнера, из которого извлекаются отдельные элементы. Примерами таких контейнеров могут служить наш класс String, класс IntArray, представленный в главе 2, или шаблон класса vector, определенный в стандартной библиотеке C++. Оператор взятия индекса обязан быть функцией-членом класса.

У пользователей String должна иметься возможность чтения и записи отдельных символов члена _string. Мы хотим поддержать следующий способ применения объектов данного класса:

String entry( " extravagant" );

String mycopy;

 

for ( int ix = 0; ix < entry.size(); ++ix )

mycopy[ ix ] = entry[ ix ];

Оператор взятия индекса может появляться как слева, так и справа от оператора присваивания. Чтобы быть в левой части, он должен возвращать l-значение индексируемого элемента. Для этого мы возвращаем ссылку:

#include < cassert>

 

inine char&

String:: operator[]( int elem ) const

{

assert( elem > = 0 & & elem < _size );

return _string[ elem ];

}

В следующем фрагменте нулевому элементу массива color присваивается символ 'V':

String color( " violet" );

color[ 0 ] = 'V';

Обратите внимание, что в определении оператора проверяется выход индекса за границы массива. Для этого используется библиотечная C-функция assert(). Можно также возбудить исключение, показывающее, что значение elem меньше 0 или больше длины C-строки, на которую ссылается _string. (Возбуждение и обработка исключений обсуждались в главе 11.)

Оператор вызова функции

Оператор вызова функции может быть перегружен для объектов типа класса. (Мы уже видели, как он используется, при рассмотрении объектов-функций в разделе 12.3.) Если определен класс, представляющий некоторую операцию, то для ее вызова перегружается соответствующий оператор. Например, для взятия абсолютного значения числа типа int можно определить класс absInt:

class absInt {

public:

int operator()( int val ) {

 int result = val < 0? -val: val;

return result;

}

};

Перегруженный оператор operator() должен быть объявлен как функция-член с произвольным числом параметров. Параметры и возвращаемое значение могут иметь любые типы, допустимые для функций (см. разделы 7.2, 7.3 и 7.4). operator() вызывается путем применения списка аргументов к объекту того класса, в котором он определен. Мы рассмотрим, как он используется в одном из обобщенных алгоритмов, описанных в главе 12. В следующем примере обобщенный алгоритм transform() вызывается для применения определенной в absInt операции к каждому элементу вектора ivec, т.е. для замены элемента его абсолютным значением.

#include < vector>

#include < algoritm>

 

int main() {

int ia[] = { -0, 1, -1, -2, 3, 5, -5, 8 };

vector< int > ivec( ia, ia+8 );

 

// заменить каждый элемент его абсолютным значением

transform( ivec.begin(), ivec.end(), ivec.begin(), absInt() );

 

//...

}

Первый и второй аргументы transform() ограничивают диапазон элементов, к которым применяется операция absInt. Третий указывает на начало вектора, где будет сохранен результат применения операции.

Четвертый аргумент – это временный объект класса absInt, создаваемый с помощью конструктора по умолчанию. Конкретизация обобщенного алгоритма transform(), вызываемого из main(), могла бы выглядеть так:

typedef vector< int >:: iterator iter_type;

 

// конкретизация transform()

// операция absInt применяется к элементу вектора int

 

iter_type transform( iter_type iter, iter_type last,

                iter_type result, absInt func )

{

while ( iter! = last )

*result++ = func( *iter++ ); // вызывается absInt:: operator()

 

return iter;

}

func – это объект класса, который предоставляет операцию absInt, заменяющую число типа int его абсолютным значением. Он используется для вызова перегруженного оператора operator() класса absInt. Этому оператору передается аргумент *iter, указывающий на тот элемент вектора, для которого мы хотим получить абсолютное значение.

15.6. Оператор “стрелка”

Оператор “стрелка”, разрешающий доступ к членам, может перегружаться для объектов класса. Он должен быть определен как функция-член и обеспечивать семантику указателя. Чаще всего этот оператор используется в классах, которые предоставляют “интеллектуальный указатель” (smart pointer), ведущий себя аналогично встроенным, но поддерживают и некоторую дополнительную функциональность.

Допустим, мы хотим определить тип класса для представления указателя на объект Screen (см. главу 13):

class ScreenPtr {

//...

private:

Screen *ptr;

};

Определение ScreenPtr должно быть таким, чтобы объект этого класса гарантировано указывал на объект Screen: в отличие от встроенного указателя, он не может быть нулевым. Тогда приложение сможет пользоваться объектами типа ScreenPtr, не проверяя, указывают ли они на какой-нибудь объект Screen. Для этого нужно определить класс ScreenPtr с конструктором, но без конструктора по умолчанию (детально конструкторы рассматривались в разделе 14.2):

class ScreenPtr {

public:

ScreenPtr( const Screen & s ): ptr( & s ) { }

//...

};

В любом определении объекта класса ScreenPtr должен присутствовать инициализатор – объект класса Screen, на который будет ссылаться объект ScreenPtr:

ScreenPtr p1; // ошибка: у класса ScreenPtr нет конструктора по умолчанию

 

Screen myScreen( 4, 4 );

ScreenPtr ps( myScreen ); // правильно

Чтобы класс ScreenPtr вел себя как встроенный указатель, необходимо определить некоторые перегруженные операторы – разыменования (*) и “стрелку” для доступа к членам:

// перегруженные операторы для поддержки поведения указателя

class ScreenPtr {

public:

Screen& operator*() { return *ptr; }

Screen* operator-> () { return ptr; }

//...

};

Оператор доступа к членам унарный, поэтому параметры ему не передаются. При использовании в составе выражения его результат зависит только от типа левого операнда. Например, в инструкции

point-> action();

исследуется тип point. Если это указатель на некоторый тип класса, то применяется семантика встроенного оператора доступа к члену. Если же это объект или ссылка на объект, то проверяется, есть ли в этом классе перегруженный оператор доступа. Когда перегруженный оператор “стрелка” определен, он вызывается для объекта point, иначе инструкция неверна, поскольку для обращения к членам самого объекта (в том числе по ссылке) следует использовать оператор “точка”.

Перегруженный оператор “стрелка” должен возвращать либо указатель на тип класса, либо объект класса, в котором он определен. Если возвращается указатель, то к нему применяется семантика встроенного оператора “стрелка”. В противном случае процесс продолжается рекурсивно, пока не будет получен указатель или определена ошибка. Например, так можно воспользоваться объектом ps класса ScreenPtr для доступа к членам Screen:

ps-> move( 2, 3 );

Поскольку слева от оператора “стрелка” находится объект типа ScreenPtr, то употребляется перегруженный оператор этого класса, который возвращает указатель на объект Screen. Затем к полученному значению применяется встроенный оператор “стрелка” для вызова функции-члена move().

Ниже приводится небольшая программа для тестирования класса ScreenPtr. Объект типа ScreenPtr используется точно так же, как любой объект типа Screen*:

#include < iostream>

#include < string>

#include " Screen.h"

 

void printScreen( const ScreenPtr & ps )

{

cout < < " Screen Object ( "

   < < ps-> height() < < ", "

   < < ps-> width() < < " )\n\n";

 

for ( int ix = 1; ix < = ps-> height(); ++ix )

{

for ( int iy = 1; iy < = ps-> width(); ++iy )

    cout < < ps-> get( ix, iy );

cout < < " \n";

}

}

 

int main() {

Screen sobj( 2, 5 );

string init( " HelloWorld" );

ScreenPtr ps( sobj );

 

// Установить содержимое экрана

string:: size_type initpos = 0;

for ( int ix = 1; ix < = ps-> height(); ++ix )

for ( int iy = 1; iy < = ps-> width(); ++iy )

{

    ps-> move( ix, iy );

    ps-> set( init[ initpos++ ] );

}

 

// Вывести содержимое экрана

printScreen( ps );

 

return 0;

}

Разумеется, подобные манипуляции с указателями на объекты классов не так эффективны, как работа со встроенными указателями. Поэтому интеллектуальный указатель должен предоставлять дополнительную функциональность, важную для приложения, чтобы оправдать сложность своего использования.


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 326; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.123 с.)
Главная | Случайная страница | Обратная связь