Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОБЩАЯ ФИЗИОЛОГИЯ ЖЕЛЕЗ ВНУТРЕННЕЙ СЕКРЕЦИИ.



Железы внутренней секреции (эндокринные железы) выделяют секрет непосредственно в межклеточную жидкость, кровь, лимфу и церебральную жидкость. Совокупность эндокринных желез образует эндокринную систему, в которой можно выделить несколько составляющих ее частей.

1. Локальная эндокринная система, которая включает в себя классические железы внутренней секреции: гипофиз, надпочечники, эпифиз, щитовидную и паращитовидные железы, островковую часть поджелудочной железы, половые железы, гипоталамус (его секреторные ядра), плаценту (временная железа), вилочковую железу (тимус). Продуктами их деятельности являются гормоны.

2. Диффузная эндокринная система, в состав которой входят железистые клетки, локализующиеся в различных органах.и тканях и секретирующие вещества, сходные с гормонами, образующимися в классических эндокринных железах.

3. Система захвата предшественников аминов и их декарбоксилирования -АПУД-система, которая представлена железистыми клетками, вырабатывающими пептиды и биогенные амины (серотонин, гистамин, дофамин и др.). Существует мнение, что АПУД-система включает в себя и диффузную эндокринную систему.

Эндокринные железы подразделяются на группы. По выраженности их морфологической связи с ЦНС они делятся на центральные (гипоталамус, гипофиз, эпифиз) и периферические (щитовидная, половые железы и др.), а по функциональной зависимости от гипофиза, которая реализуется через его тропные гормоны, на «..гипофизозависимые и гипофизонезависимые.

Методы исследования желез внутренней секреции.

1. Наблюдение результатов полного или частичного хирургического удаления или химического торможения той или иной железы. Например, аллаксан может избирательно блокировать бета-клетки островкового аппарата поджелудочной железы, которые секретируют инсулин.

2. Введение экстрактов эндокринных желез, химически чистых гормонов или гормональных препаратов интактному животному или животному после удаления железы- внутренней секреции, а также пересадка в организм животного ткани этой железы, т. е. исследование эффекта избытка и эффекта замещения дефицита гормона.

3. Создание общего кровообращения двух организмов (сращивание), у одного из которых повреждена или удалена та или иная железа внутренней секреции.

4. Сравнение физиологической активности крови, притекающей к железе и оттекающей от нее.

5. Определение содержания гормонов и их метаболитов в плазме крови, спинномозговой жидкости биологическими и химическими методами.

6. Изучение механизмов биосинтеза гормонов с помощью радиоактивных изотопов. Эта методика позволяет установить не только синтез гормона, но и место этого синтеза в железе.

7. Изучение химической структуры гормона и его искусственный синтез.

8. Исследование больных с недостаточной или избыточной функцией той или иной железы и последствий хирургических операций, проведенных у этих больных с лечебными целями.

9. Трансплантация эндокринных желез, с помощью которой можно доказать ее эндокринную функцию.

10. Денервация железы.

11. Раздражение нервов, иннервирующих данную железу.

12. Метод условных рефлексов.

Железы внутренней секреции, выделяя биологически активные вещества, играют важную роль в реализации гуморальной регуляции. Эти вещества подразделяются на несколько групп.

Гормоны - вещества, выделяемые эндокринными железами или скоплением эндокринных клеток в кровь, и оказывающие специфическое действие на другие органы и ткани.

Гормоноподобные вещества (парагормоны, местные гормоны и др. ) - вырабатываются клетками диффузной эндокринной и АПУД системами. Выделяются в интерстициальную жидкость и кровь. Оказывают местное и общее действие. Гормоноиды выделяют, например, клетки желудодочно-кишечного тракта (серотопин-хромофИльные клетки), соединительной тканью (гепарин и гистамин-тучные клетки), почками (ренин), семенными пузырьками (простагландины) и т.д.

Нейрогормоны - вырабатываются нервными клетками гипоталамуса и секретируются в кровь, оказывая специфическое действие на органы и ткани.

Нейромедиаторы - вырабатываются нервными клетками, участвуют в передаче возбуждения в синапсах, после чего всасываются в кровь и оказывают специфическое действие на органы и ткани.

Нейромодуляторы - вырабатываются нервными клетками, регулируют процесс передачи возбуждения в синапсах.

Биологически активные вещества оказывают влияние несколькими путями. Аутокринный путь - выделяемое вещество действует на клетку, продуцирующую данное вещество. Паракринный - выделяемое вещество действует на клетки-мишени через интерстициальную жидкость. Эндокринный - выделяемое вещество секретируется в кровь и ею транспортируются к клеткам-мишеням. Нейро-эндокринный - биологически активное вещество синтезируется нервной клеткой, выделяется в ее синапсы, попадает в кровь и оказывает специфическое действие на клетки-мишени.

Несмотря на то, что гормоны имеют различную химическую природу: белковую (пептидные, протеидные), липидную (стероидные) и аминокислотную, они характеризуются общими биологическими свойствами:

* дистантностью действия;

* высокой специфичностью;

* высокой биологической активностью - незначительные количества гормонов могут вызывать изменение функций организма;

* они оказывают действие только на сложные структуры клетки (клеточные мембраны, ферментные системы).

Стероидные гормоны и гормоны производные аминокислот не имеют видовой специфичности и оказывают однотипное действие на представителей разного вида. Белково-липидные гормоны, как правило, обладают видовой специфичностью. Поэтому, выделенные из организма животных, они не всегда могут быть использованы для введения человеку, так как подобно чужеродным белкам могут вызвать защитные (иммунные) реакции.

Гормоны от места их секреции транспортируются кровью в следующих состояниях:

* свободном;

* связанном с белком (80%);

* адсорбированном на форменных элементах крови.

Связанная или адсорбированная форма гормонов позволяет регулировать содержание гормонов по уровню их свободной фракции. Помимо этого, связанные гормоны - это их депо (физиологический резерв), переход из которого в свободную фракцию происходит по мере снижения их концентрации. Связанная форма гормонов защищена от действия ферментов. Комплексирование гормонов с белками препятствует фильтрации низкомолекулярных гормонов в почках и, следовательно, предотвращает их потери с мочой.

Характерной особенностью гормонов является их влияние на мишени, расположенные далеко от места их выработки, опосредованно через кровь. При этом они действуют лишь на те клетки, которые имеют специфические рецепторы для определенного гормона.

Гормоны могут оказывать следующие влияния.

* Метаболическое - изменение обмена веществ.

* Морфогенетическое - стимулирующее влияние на формообразовательные процессы, дифференцировку, рост и т. Д.

* Кинетическое - стимуляция определенной деятельности исполнительных органов.

* Коррегирующее - изменение интенсивности функций органов и тканей. По функциональному признаку гормоны могут быть разделены на группы.

* Эффекторные - оказывают влияние непосредственно на объект-мишень.

* Тропные - регулируют выделение и синтез эффекторных гормонов (например, тиреотропный гормон).

* Либерины (релизинг-гормоны) и статины (ингибитор-гормоны) - стимулируют или тДрмозят, соответственно, процессы синтеза и выделения тропных гормонов.

Эти гормоны выделяются нервными клетками гипоталамуса. Именно с их помощью ЦНС регулирует функции эндокринной системы.

Функциональные значения гормонов реализуются через их влияния на обменные процессы в организме, что в последующем проявляется в характере физического, полового и умственного развития, адаптации органов и систем организма к меняющимся условиям их существования, обеспечение поддержания гомеостаза. Все эти процессы и составляют различные типы влияний гормонов: метаболического, морфогенетического, кинетического, коррегирующего.

 

Функции гормонов реализуются через следующие механизмы их действия:

1. Мембранный или локальный механизм - гормон действует на рецепторы мембраны, вызывает увеличение ее проницаемости для веществ, изменение концентрации которых в цитоплазме влияет на биохимические процессы в клетке и, следовательно, на ее функциональное состояние.

2. Мембранно-внутриклеточный или косвенный - гормон (первичный посредник) действует на рецепторы мембраны, что приводит к активации вторичных посредников, таких как ионы кальция, циклический аденилатмонофосфат (цАМФ), циклический гуанилатомонофосфат (цГМЦ), простогландины и др., а они в свою очередь, влияют на активацию и синтез ферментов клетки и изменяют ее функциональное состояние.

3. Цитозольный или прямой механизм - гормон проникает через мембрану в клетку и без посредников влияет на генетический аппарат ядра клетки, изменяя процесс синтеза ферментов, белков и др.

Следовательно, молекулярный механизм специфического действия гормонов происходит тремя путями:

* изменение скорости синтеза ферментов и других белков;

* изменение скорости ферментативного катализа;

* изменение проницаемости клеточных гормонов.

Разрушение (катаболизм) гормонов - Гормоны очень быстро разрушаются в тканях, в частности, в печени. Поэтому для поддержания достаточной концентрации гормонов в крови и обеспечения их длительного действия, необходимо постоянное поступление гормонов в кровь из соответствующей железы. Длительность периода полураспада гормона (время, необходимое для расщепления половины имеющегося гормона) колеблется от нескольких минут до двух часов. Наиболее полная химическая деградация гормонов происходит в печени путем их дезаминироваия и метилирования.

При рассмотрении функций конкретных желез внутренней секреции их часто объединяют в своеобразные подсистемы, которые правильнее назвать " рабочими системами", например, гипоталамогипофизальная, симпато-адреналовая, гастро-энтеро-панкреатическая и др. Это свидетельствует о взаимосвязи эндокринных желез. Взаимодействие между эндокринными железами может осуществляться так, что:

* на один и тот же орган или физиологическую функцию могут оказывать влияние одновременно несколько гормонов разных желез;

* гормоны одних желез влияют на функцию других желез.

Различают несколько типов взаимодействия между эндокринными железами.

1. Взаимодействие по принципу положительной и отрицательной прямой и.обратной связи. Например, тиреотропный гормон передней доли гипофиза стимулирует продукцию гормонов щитовидной железы. При удалении передней доли гипофиза происходит атрофия щитовидной железы и развивается дефицит тиреотропных гормонов. Это прямая положительная связь. Другой пример. Гиперфункция щитовидной железы тормозит образование тиреотропного гормона, т.е. реализуется отрицательная обратная связь между щитовидной железой и передней долей гипофиза.

2. Синергизм гормональных влияний или орднонаправленное действие разных гормонов. Например, адреналин и глюкагон - активируют расщепление гликогена в печени до глюкозы и вызывают повышение содержания сахара в крови (молекулярные основы этого синергезма различны).

3. Антагонизм гормональных влияний. Например, инсулин и адреналин вызывают разные эффекты, инсулин - гипогликемию, адреналин - гипергликемию. Однако, этот пример относительного, а не абсолютного антагонизма в организме. На самом деле происходит улучшение углеводного питания тканей: адреналин способствует превращению резервного гликогена печени в глюкозу, которая поступает в кровь, а инсулин обеспечивает поступление глюкозы к клеткам с дальнейшим процессом ее утилизации.

4. Пермиссионное (разрешающее) действие гормонов выражается в том, что гормон, не вызывая физиологического эффекта сам, создает условия для реакции клеток и органов на действие других гомонов. Например, влияние глюкокортикоидов на эффекты адреналина. Сами глюкокортикоиды не влияют ни на тонус гладких мышц сосудов, ни на распад гликогена печени, но они создают условия, при которых даже низкие (подпороговые) концентрации адреналина повышают артериальное давление и вызывают гипергликемию как результат глюкогенолиза в печени.

Регуляция функций эндокринной системы . Интенсивность выделения каждого гормона железой в данный момент регулируется в соответствии с потребностью организма в данном гормоне. Существует несколько способов регуляции функций эндокринных желез. Во-первых, через прямое влияние на клетки желез концентрацией того вещества, уровень которого регулирует данный гормон. Например, выработка паратгормона, повышающего уровень кальция в крови, снижается при воздействии на клетки паращитовидных желез повышенных концентраций кальция. Или - усиление секреции инсулина возникает при повышении концентрации глюкозы в крови, протекающей через под желудочную железу. Во-вторых, опосредованно через нейрогормональные или гормональные механизмы, т.е. с участием других желез внутренней секреции. В-третьих, при помощи прямых нервных влияний на секреторные клетки железы (наблюдается только в мозговом веществе надпочечников и эпифизе). В остальных железах внутренней секреции нервные волокна регулируют в основном тонус кровеносных сосудов и, следовательно, кровоснабжение железы, от уровня которого зависит, в известной мере, функция железы.

Функционирование эндокринной системы осуществляется в тесном взаимодействии и взаимовлиянии с нервной системой. Так, например, гипоталамус получает информацию из внешней и внутренней среды. Эта информация по сенсорным системам поступает в различные системы головного мозга. Из них она в переработанном виде передается в гипоталамус, где она интегрируется с информацией, полученной им непосредственно от внутренней среды. В результате этого в гипоталамусе выделяются регуляторные гормоны, которые включаются в общую систему эндокринной регуляции. Наряду с этим формируются нервные влияния на железы, которые осуществляются через вегетативную нервную систему.

Нервная регуляция эндокринной системы через гипоталамус осуществляется, в основном, с участием структур лимбической системы: гиппокампа, миндалины, переднего таламуса, полосатого тела, соответствующих областей больших полушарий головного мозга. При этом регуляция со стороны лимбической системы может осуществляться двумя путями: трансгипофизальным и парагипофизальным.


ЧАСТНАЯ ФИЗИОЛОГИЯ ЖЕЛЕЗ ВНУТРЕННЕЙ СЕКРЕЦИИ.


Гипофиз.

Гипофиз состоит из трех долей: передней, промежуточной и задней. Передняя доля гипофиза - аденогипофиз. Все гормоны передней доли гипофиза являются белковыми веществами.

1. Соматотропный гормон (соматотропин, гормон роста) - стимулирует синтез белка в органах и тканях и, следовательно, рост молодого организма, повышает синтез рибонуклеиновой кислоты, усиливает транспорт аминокислот из крови в клетки. В связи с увеличением синтеза белков падает содержание аминокислот в крови. Происходит задержка в организме азота, а также натрия, кальция, фосфора. Под его влиянием усиливается мобилизация жира из депо и использование его в энергетическом обмене. При недостатке гормона роста в детском возрасте происходит задержка роста, и человек вырастает карликом, а при избыточной его продукции развивается гигантизм. Избыток гормона у взрослого человека увеличивает размеры тех частей, которые еще сохранили способность к росту (пальцы рук и ног, кисти, стопы, нос, нижняя челюсть, язык, органы грудной и брюшной полости). Это заболевание называется акромегалией.

Выделение соматотропного гормона стимулируется соматотропинвысвобождающим фактором, а тормозится соматостатином.

2. Гонадотропные гормоны. К гонадотропным гормонам относятся: фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ). Физиологические эффекты ФСГ и ЛГ обусловоены их действием на половые железы (стимуляцией развития пубертатной железы и фолликулов), образованием в них половых гормонов.

Высвобождение ФСГ гипофизом стимулируется действием нейросекрета гипоталамуса. Повышение в крови уровня андрогенов или эстрогенов тормозит выделение этого нейросекрета, а также секрецию ФСГ аденогипофизом. Эта отрицательная обратная связь регулирует нормальный уровень половых гормонов в организме.

Влияние гипоталамуса на выработку ЛГ гипофизом осуществляется посредством нейросекреции ЛГ-высвобождающего фактора.

3. Клетками передней доли гипофиза продуцируется пролактин или лютеотропный гормон, который усиливает секрецию молока молочными железами и снижает потребление глюкозы тканями. Стимуляция секреции пролактина осуществляется рефлекторно с участием центров гипоталамической области.

4. Тиротропный гормон (ТТГ). Тиротропный гормон или тиротропин стимулирует функцию щитовидной железы: он активирует протеазы, что повышает распад тироглобулина в щитовидной железе, а это сопровождается усилением выделения тироксина и трийодтиронина в кровь.

Стимуляция секреции тиротропина осуществляется гипоталамусом, клетки которого продуцируют фактор, стимулирующий образование тиротропина. При охлаждении организма секреция тиротропина усиливается, что сопровождается усилением образования гормонов щитовидной железы и, следовательно, повышением продукции тепла. Этот процесс может осуществляться и условно-рефлекторно.

5. Адренокортикотропный гормон (АКТГ). Этот гормон вызывает разрастание пучковой и сетчатой зон коры надпочечников и усиливает синтез их гормонов. Секреция АКТГ усиливается при воздействии раздражителей, вызывающих в организме стрессогенные состояния. Он, действуя на надпочечники, вызывает усиление выработки глюкокортикоидов, которые способствуют повышению сопротивляемости организма неблагоприятным факторам.

ПРОМЕЖУТОЧНАЯ ДОЛЯ ГИПОФИЗА. Гормон промежуточной доли - интермедин или меланостимулирующий гормон встречается в двух формах, которые отличаются по числу аминокислотных остатков. Во время беременности и при недостаточности коры надпочечников (в этих случаях нередко наблюдаются изменения пигментации кожи) количество меланостимулирующего гормона в гипофизе возрастает.

Секреция интермедина регулируется рефлекторно под влиянием действия света на сетчатку глаза. Он принимает участие в регуляции движения клеток черного пигментного слоя в глазу. При ярком освещении клетки пигментного слоя выпускают псевдоподин и избыток световых лучей поглощается пигментом, что предохраняет сетчатку от интенсивного раздражения.

ЗАДНЯЯ ДОЛЯ ГИПОФИЗА (НЕЙРОГИПОФИЗ). Гормонами нейрогипофиза являются антидиуретический гормон (АДГ) или вазопрессин и окситоцин. Образование гормонов задней доли гипофиза происходит в основном в ядрах гипоталамуса в результате процессов нейросекреции. АДГ, по-видимому, секретируется в супраоптическом ядре, а окситоцин - в паравентрикулярном ядре гипоталамуса. По аксонам нервных клеток эти гормоны поступают в заднюю долю гипофиза. Этому способствует наличие прямой связи нейрогипофиза с ядрами гипоталамуса.

Механизм действия АДГ состоит в том, что под его воздействием усиливается реабсорбция воды в собирательных трубках почек. При снижении секреции АДГ возникает несахарный диабет, который сопровождается выделением больших количеств мочи (иногда десятки литров в сутки), что связано с нарушением реабсорбции воды в сократительных трубках. В больших дозах он вызывает сокращение гладких мышц сосудов (особенно артериол), что приводит к повышению артериального давления.

Окситоцин стимулирует сокращение гладких мышц матки и, таким образом, обеспечивает нормальное течение родового акта, влияет на отделение молока.

Регуляция внутренней секреции гипофиза. Гипофиз, который регулирует функции ряда эндокринных желез (половых, щитовидной, надпочечников), сам находится в зависимости от функционирования этих желез. Недостаток в крови андрогенов и эстрогенов, глюкокортикоидов и тироксина сопровождается стимуляцией продукции АКТГ, гонадотропного и тиреотропного гормонов гипофиза. Избыток этих гормонов угнетает продукцию соответствующих тропных гормонов гипофиза. Следовательно, гипофиз включен в систему нейрогуморальной регуляции, которая работает по принципу обратной связи, что обеспечивает поддержание концентрации гормонов на необходимом уровне.

Продукты нейросекреции гипоталамуса, поступая к передней доле гипофиза, усиливают выделение ряда гормонов. Это связано с тем, что в гипоталамусе образуются вещества, получившие название высвобождающих факторов (релизинг-факторов) или либеринов, которые стимулируют образование и выделении.АКТГ, гонадотропинов, тиротропина, соматотропина.                          

Задняя доля гипофиза имеет прямую нервную связь с ядрами гипоталамуса, в которых секретируются вазопрессин и окситоцин. Это свидетельствует о тесной связи гипоталамуса и гипофиза, которые представляют собой единую систему регуляции вегетативных функций организма, осуществляемую как благодаря выделению соответствующих гормонов гипофиза, т. е. гуморальным путем, так и непосредственно через вегетативную нервную систему, поэтому гипоталамус является высшим подкорковым вегетативным нервным центром.

Щитовидная железа.

Характерной особенностью клеток щитовидной железы является их способность поглощать йод, который затем входит в состав гормонов, продуцируемых фолликулами этой железы. Основными гормонами щитовидной железы являются тироксин и трийодитиронин. Поступая в кровь, они связываются с белками плазмы крови, которые являются их переносчиками, а в тканях эти комплексы распадаются, освобождая гормоны.

Характерным действием гормонов щитовидной железы является усиление энергетического обмена путем стимуляции окислительных процессов. При этом значительно увеличивается основной обмен, увеличивается расход белков, жиров и углеводов, что сопровождается похудением. Гормоны щитовидной железы ускоряют развитие организма.

Гипофункция щитовидной железы, в детском возрасте, приводит к развитию кретинизма, а во взрослом - к развитию микседемы (" слизистого отека" ), т.к. в результате нарушения белкового обмена в межклеточной жидкости увеличивается количество муцина и альбуминов, что приводит к повышению осмотического давления тканевой жидкости и задержке воды в тканях, особенно в подкожной клетчатке. При недостатке йода в пище и воде наблюдается ее гипофункция с разрастанием ткани железы и образованием так называемого зоба. Хотя сама железа гипертрофированна, но продукция гормонов в ней снижена.

Гиперфункция щитовидной железы (гипертиреоз). Проявляется в увеличении щитовидной железы, пучеглазии, тахикардии, высокой раздражительности, резком повышении основного обмена и температуры тела, увеличенном потреблении пищи и, вместе с тем, потерей веса. Это заболевание называется базедовой болезнью. Так как эта болезнь является результатом гипертиреоза, т.е. избыточной продукции гормонов щитовидной железы и увеличения их содержания в крови до концентрации, вызывающей токсические явления, ее называют тиреотоксикозом.

В щитовидной железе, кроме йодсодержащих гормонов, образуется тиреокальцитонин. Местом его образования являются парафолликулярные клетки, расположенные вне железистых фолликулов щитовидной железы. Под влиянием кальцитонина происходит снижение содержания кальция в крови. Это связанно с тем, что он угнетает функцию остеокластов, способствующих образованию костной ткани и поглощению ионов кальция из крови. Следовательно, тиреокальцитонин способствует сбережению кальция в организме.

Регуляция внутренней секреции щитовидной железы. Щитовидная железа богато снабжена афферентными и эфферентными нервами. Импульсы, приходящие к железе по симпатическим волокнам, стимулируют ее активность. Гормонообразование щитовидной железы находится под влиянием гипоталамо-гипофизарной системы. При снижении секреции йодосодержащих гормонов в плазме крови повышается содержание триеотропного гормона (ТТГ), уровень которого, в свою очередь, зависит'от стимуляции тиреотропин-релизинг-гормона (ТРГ). Тиреотропин вызывает увеличение синтеза гормонов и их секреции путем стимуляции аденилатциклазы в эпителиальных клетках железы. ТТГ стимулирует все фазы метаболизма йода, йодизацию тирозина и синтез тироксина, а также протеолитическое расщепление тиероглобулина и отдачу тиреодных гормонов. Выделение тиреодных гормонов приводит к снижению ТТГ. В систему регуляции включена также гипофизотропная зона гипоталамуса, где вырабатывается ТРГ, стимулирующий выработку ТТГ гипофизом. Тироксин тормозит секрецию ТРГ и ТТГ.

57. Околощитовидные железы.

У человека имеется четыре околощитовидных железы, которые продуцируют паратгормон. Он за счет активации функции остеокластов вызывает разрушение костной ткани, выход из нее ионов кальция и повышения их концентрации в крови. Паратгормон активирует и другие процессы, вызывающие повышение уровня кальция в крови. Например, он усиливает всасывание кальция в кишечнике и реабсорбцию в канальцах почки. Все это приводит к значительному повышению уровня кальция и одновременному снижению концентрации неорганических фосфатов в крови.

При недостаточной функции паращитовидных желез в детском возрасте нарушается рост костей, зубов, волос, возникают длительные спастические сокращения мышечных групп. У взрослого человека в этих условиях существенно повышается возбудимость ЦНС, возникают приступы судорог.

Гиперфункция паращитовидных желез сопровождается повышением содержания кальция в крови и снижением количества неорганического фосфата. В этих случаях развивается остеопороз, т. е. разрушение костной ткани, мышечная слабость, боли в спине, конечностях.

Регуляция образования гормонов, регулирующих обмен кальция. В норме концентрация ионов кальция в плазме крови поддерживается на постоянном уровне. Поддержание определенной концентрации ионов кальция в крови обусловлено взаимодействием двух гормонов - паратгормона и тирокальцитонина. Снижение уровня кальция в крови, омывающей железу, приводит к увеличению поступления кальция в кровь из его костных депо. Повышение же содержания кальция в крови, омывающей паращитовидные железы, угнетает секрецию паратгормона и усиливает образование тирокальцитонина, в результате чего количество кальция в крови снижается. Следовательно, между содержанием кальция в крови и внутренней секрецией околощитовидных желез и парафолликулярных клеток щитовидной железы имеется двухсторонняя связь: изменение концентрации кальция в крови вызывает изменения секреции паратгормона и тирокальцитонина, а они регулируют содержание кальция в крови. Эти взаимоотношения не опосредуются ни нервными, ни гуморальными механизмами.

59. Надпочечники.

Надпочечники состоят из мозгового и коркового вещества, гормоны которых отличаются по своему действию.

Мозговое вещество надпочечников. Гормон мозгового вещества надпочечников адреналин, образуется из его предшественника - норадреналина. Адреналин и норадреналин объединяют под названием катехоламины, или симпатомиметические амины, т. к. их действие на органы и ткани сходно с действием симпатических нервов.

Адреналин оказывает влияние на многие функции организма:

*в мышцах усиливается гликогенолиз;

* он вызывает учащение и усиление сердечной деятельности, улучшает проведение возбуждения в сердце;

* суживает артериолы кожи, брюшных органов и неработающих мышц;

* ослабляет сокращения желудка и тонкого кишечника;

* расслабляет бронхиальную мускулатуру, в результате чего просвет бронхов и бронхиол увеличивается;

* вызывает сокращение радиальной мышцы радужной оболочки, что приводит к разрушению зрачков;

* повышает чувствительность рецепторов, в частности, сетчатки глаза, слухового и вестибулярного аппарата.

Следовательно, адреналин вызывает экстренную перестройку функций, направленную на улучшение взаимодействия организма с окружающей средой.

Действие норадреалина сходно с действием адреналина, но не во всем. Норадреналин, например, вызывает сокращение гладкой мышцы матки крысы, адреналин расслабляет ее. У человека норадреналин повышает периферическое сосудистое сопротивление, а также систолическое и диастолическое давление, а адреналин приводит к повышению только систолического давления. Адреналин стимулирует секрецию гормонов передней доли гипофиза, норадреналин подобного эффекта не вызывает.

При раздражении секреторных нервов надпочечников усиливается выделение им адреналина и норадреналина. При всех состояниях, которые сопровождаются чрезмерной деятельностью организма и усилением обмена веществ (эмоциональное возбуждение, мышечная нагрузка, охлаждение организма и т. д.) секреция адреналина увеличивается. Повышение секреции адреналина обеспечивает те физиологические изменения, которые сопровождают эмоциональные состояния.

Кора надпочечников. Гипофункция коры надпочечников наблюдается у человека при болезни Аддисона (бронзовой болезни). Признаками ее являются бронзовая окраска кожи, ослабление работы сердечной мышцы, астения, кахексия. При гиперфункции происходит изменение полового развития, т. к. начинают усиленно выделяться половые гормоны.Гормоны коры надпочечников делятся на три группы:

* минералокортикоиды;

* глюкокортикоиды;

* половые гормоны.

1. Минералокортикоиды. Из минералокортикоидов наиболее активны альдостерон и дезоксикортикостерон. Они участвуют в регуляции минерального обмена организма, прежде всего, натрия и калия.

Альдостерон. В клетках канальциевого эпителия почек он активирует синтез ферментов, повышающих активность натриевого насоса, что приводит к увеличению реабсорбции натрия и хлора в канальцах почки и, следовательно, повышению содержания натрия в крови, лимфе и тканевой жидкости. Одновременно происходит снижение реабсорбции ионов калия в почечных канальцах и уменьшение его содержания в организме. Повышение концентрации натрия в крови и тканевой жидкости. Одновременно происходит снижение реабсорбации ионов калия в почечных канальцах и уменьшение его содержания в организме. Повышение концентрации натрия в крови и тканевой жидкости повышает их осмотическое давление, что сопровождается задержкой воды в организме и увеличением уровня артериального давления.

При недостатке минералокортикоидов, в результате снижения реабсорбции натрия в канальцах, организм теряет большое количество этих ионов, что часто несовместимо с жизнью.

Регуляция уровня минералокортикоидов в крови. Секреция минералокортикоидов находится в прямой зависимости от содержания натрия и калия в организме. Повешенное содержание натрия в крови тормозит секрецию альдостерона, а недостаток натрия в крови вызывает усиление секреции альдостерона. Ионы калия также действуют непосредственно на клетки клуюочковой зоны надпочечников и оказывают противоположное влияние на секрецию альдостерона. АКТГ увеличивает секрецию альдостерона. Снижение объема циркулирующей крови стимулирует его секрецию, а увеличение объема тормозит, что приводит к выделению с мочой натрия, а вместе с ним и воды. Это приводит к нормализации объема циркулирующей крови и количества жидкости в организме.

2. Глюкокортикоиды - кортизон, гидрокортизон, кортикостерон оказывают влияние на белковый, жировой и углеводный обмен. Они способны повышать уровень сахара в крови (отсюда их название) за счет стимуляции образования глюкозы в печени в результате ускорения процессов дезаминирования аминокислот и превращение их безбелковых остатков в углеводы. Они ускоряют распад белков, что приводит к возникновению отрицательного азотистого баланса. Изменение белкового обмена под влиянием в разных тканях различно. Так, в мышцах синтез белков угнетается, в лимфоидной ткани происходит их усиленный распад, а в печени синтез белков ускорен.

Глюкокортикоиды усиливают мобилизацию жира из жировых депо и его использование в процессах энергетического обмена. Они возбуждают ЦНС, способствуют развитию мышечной слабости и атрофии скелетной мускулатуры, что связанно с усилением распада сократительных белков мышечных волокон.

При недостаточной секреции глюкокортикоидов понижается сопротивляемость организма к различным вредным воздействиям.

Усиление выделения глюкокортикоидов происходит при чрезвычайных состояниях организма (боли, травме, кровопотере, перегревании, переохлаждении, отравлении, инфекционных заболеваниях и др.), когда рефлекторно усиливается выработка адреналина. Он поступает в кровь и воздействует на гипоталямус, стимулируя '-образование в его клетках фактора, способствующего образованию АКТГ. АКТГ же стимулирует секрецию глюкокортикоидов.

3. Половые гормоны коры надпочечников. Половые гормоны коры надпочечников (андрогены и эстрогены) играют важную роль в развитии половых органов в детском возрасте, что особенно важно, так как в этот период внутрисекреторная функция половых желез еще слабо выраженна. После достижения половой зрелости роль половых гормонов надпочечников невелика. Однако в старости, после прекращения внутрисекреторной функции половых желез, кора надпочечников вновь становится единственным источником секреции эстрогенов и андрогенов.

60. Половые железы.

Половые железы секретируют половые гормоны, которые разделяют на две группы: андрогены - мужские половые гормоны и эстрогены - женские половые гормоны. Те и другие образуются как в мужских, так и в женских половых железах, но в разных количествах. Физиологическая роль половых гормонов состоит в обеспечении половых функций. Эти гормоны обеспечивают развитие вторичных половых признаков, а в женском организме играют большую роль в возникновении половых циклов, в обеспечении нормального протекания беременности и в подготовке к кормлению новорожденного.

При нарушении функции половых желез (яичников или семенников) изменяется соотношение продукции этих гормонов и, следовательно, соответствующих функций. Такое состояние получило название интерсексуальности. Оно у мужчин может проявляться наличием некоторых физических и психических особенностей, свойственных женщинам, а у женщин - мужчинам.

Регуляция деятельности половых желез. Деятельность половых желез регулируется нервной системой, а также гормонами гипофиза и эпифиза. Нервная регуляция половых желез осуществляется путем рефлекторного изменения внутренней секреции гипофиза, особенно секреции гонадотропных гормонов или гонадотропинов передней доли гипофиза, которые резко усиливают эндокринную функцию половых желез. После удаления гипофиза у неполовозрелых животных развитие половых желез замедляется и остается незаконченным - в семенниках не происходит образование сперматозоидов, а в яичниках фолликулы не достигают зрелости. При удалении гипофиза у половозрелых животных наблюдается атрофия половых желез.

Гормон эпифиза - мелатонин - угнетает развитей половых желез и их активность.

Плацента. Плацента выделяет эстроген, прогестерон и хореонический гонадотропин. При удалении у животных гипофиза или яичника, когда плацента уже хорошо развита, выкидыша не происходит, т.к. гормоны плаценты способны заменить соответствующие гормоны гипофиза и яичников и обеспечить нормальное протекание беременности.

Эпифиз.

В эпифизе образуется вещество - мелатонин, которое оказывает воздействие на меланофоры (пигментные клетки кожи). Его действие противоположно действию интермедина и вызывает посветление кожи. При повреждении эпифиза у детей возникает преждевременное половое созревание. Под влиянием освещения образование мелатонина в эпифизе снижается. Эпифиз содержит большое количество серотонина, который является предшественником мелатонина. Образование серотонина в эпифизе увеличивается в период наибольшей освещенности.

Внутренняя секреция эпифиза регулируется симпатичесим отделом вегетативной нервной системы, так как цикл биохимических процессов в эпифизе отражает смену периодов дня и ночи, то полагают, что эта циклическая активность представляет собой своеобразные биологические часы организма.

 

Поджелудочная железа.

Белые отростчатые эпидермоциты (островки Ландерганса) состоят из трех типов клеток: альфа-, бета- и гамма-клеток.

Бета-клетки выделяют инсулин, альфа-клетки (γ ) выделяют соматостатин, альфа-клетки выделяют глюкагон. Кроме того, вероятно, эпителии

мелких протоков поджелудочной железы выделяет гормон липокаин. В экстрактах этой железы найдены еще два гормона - ваготонин и центропнеин.

Инсулин повышает проницаемость мембраны мышечных и жировых клеток для глюкозы, в результате чего скорость поступления ее внутрь клетки увеличивается в 20 раз. Способствуя транспорту глюкозы внутрь клетки, инсулин обеспечивает ее утилизацию.

Под влиянием инсулина возрастает проницаемость клеточной мембраны для аминокислот, из которых в клетках синтезируются белки. Инсулин стимулирует синтез информированной РНК и тем самым способствует синтезу белков.

После введения больших доз инсулина происходит переход значительного количества глюкозы из плазмы крови в клетки. Это приводит к снижению уровня глюкозы в крови (гипогликемии), что уменьшает поступление глюкозы в клетки нервной системы, на проницаемость которых инсулин не действует. Головной и спинной мозг начинает испытывать недостаток глюкозы, которая является основным источником энергии для нервных клеток. Углубление такого состояния может привести к острому нарушению деятельности мозга - гипогликемической коме, которая проявляется периодическими приступами судорог, падением мышечного тонуса, понижением температуры тела, потерей сознания, то состояние немедленно купируется внутривенным введением раствора глюкозы.

При снижении секреции инсулина происходит повышение содержания глюкозы в крови (гипергликемия) и выделение ее мочой. Гипергликемия связана с тем, что поступающая в кровь глюкоза не полностью утилизируется клетками печени. Вместе с тем в организме накапливаются продукты неполного окисления жиров. Интенсивное образование кислых продуктов расщепления жиров и дезаминирования аминокислот в печени могут вызвать сдвиг реакции крови в кислую сторону и развитие патологического состояния (диабетической комы), которое протекает с нарушением дыхания, кровообращения, потерей сознания.

Глюкагон - гормон поджелудочной железы, который стимулирует в клетке переход фосфорилазы, принимающей участие в расщеплении гликогена с образованием глюкозы, из неактивной формы в активную, что приводит к усилению гликогена и к повышению сахара в крови. Глюкагон стимулирует синтез гликогена в печени из аминокислот, но тормозит синтез жирных кислот и одновременно активирует печеночную липазу, что способствует расщеплению жиров. Глюкагон повышает сократительную функцию миокарда, не оказывая влияния на его возбудимость. Регуляция внутренней секреции поджелудочной железы.

Выделение инсулина происходит непрерывно, но с разной интенсивностью. Образование инсулина и глюкагона регулируется содержанием глюкозы в крови. Увеличение ее содержания (после приема больших количеств сладкой пищи, при гипергликемии, возникшей в результате напряженной физической работы, при эмоциональных состояниях) повышает секрецию инсулина. Понижение уровня глюкозы тормозит секрецию инсулина, но повышает секрецию глюкагона. Глюкоза влияет непосредственно на клетки поджелудочной железы.

Образование инсулина повышается во время пищеварения и понижается натощак. Концентрация инсулина в крови зависит не только от интенсивности его образования и от интенсивности его образования, но и от скорости его разрушения.

Уровень глюкозы в крови, кроме инсулина и глюкагона, регулируется соматропным гормоном гипофиза и гормонами надпочечников.

Желудочно-кишечный тракт. Часть веществ, которые образуются в желудочно -кишечном тракте, переносятся кровью и поэтому их можно рассматривать как гормоны. Гормоны, образующиеся в пищеварительном канале, имеют важное значение в регуляции процессов моторики, секреции всасывания. К этой группе гормонов относятся: секретин, гастрин, холицистокинин-панкреозимин, гастроингибирующий пептид, бомбезин, мотилин, соматостатин, энкефалин, нейротензин, панкреатический полипетид и др.

Выделяют несколько видов тканевых гормонов .

Кинины - являются стимулятором сокращения гладкой мускулатуры кишки, бронхов и других образований. Они также могут регулировать кровоток в тканях и принимать участие в развитии воспалительной реакции. К группе кининов, прежде всего, относится брадикинин, который вфызывает сужение сосудов.

Простагландины. Обнаружены практически во всех органах. Эти вещества оказывают местное действие. На клеточном уровне они могут оказывать влияние на метаболизм, реализуя конечные эффекты гормонов. Предполагают, что они могут регулировать образование цАМФ и таким образом видоизменять действие гормонов.

Эритропоэтин. Вырабатывается в юкстагломерулярном аппарате почек, он стимулирует эритропоэз и, по-видимому, может быть отнесен к гормонам.

Серотонин. Выделяется из нервных окончаний в некоторых отделах головного мозга (гипоталамусе, эпифизе), а также синтезируется в желудочно-кишечном тракте. Серотонин содержится в тромбоцитах и оказывает сосудосуживающее действие.

Гистамин. Образуется в ходе реакций антигег-антитело. Он обнаружен также в гипоталамусе и гипофизе. Полагают, что он играет роль нейромедиатора и участвует в качестве паракринного медиатора в процессах регуляции и секреции соляной кислоты железами желудка.

К органам с нечетко выясненной или видоизмененной эндокринной функцией относится тимус (вилочковая железа). Она расположена в стенке глотки в области жаберных карманов. В тимусе из стволовых клеток костного мозга образуются Т-лимфоциты. Тимус участвует в формировании лимфатической системы и определяет спектр иммунологической активности организма.

ПИЩЕВАРЕНИЕ.

В процесс жизнедеятельности организма непрерывно расходуются питательные вещества, которые выполняет пластическую и энергетическую функцию. Организм испытывает постоянную потребность в питательных веществах, к которым относятся: аминокислоты, моносахара, глицин и жирные кислоты. Состав и количество питательных веществ в крови является физиологической константой, которая поддерживается функциональной системой питания. В основе формирования функциональной системы лежит принцип саморегуляции.

Источником питательных веществ являются различные продукты питания, состоящие из сложных белков, жиров и углеводов, которые в процессе пищеварения превращаются в более простые вещества, способные всасываться. Процесс расщепления сложных пищевых веществ под действием ферментов на простые химические соединения, которые всасываются, транспортируются к клеткам и используются им называется пищеварением. Последовательная цепь процессов, приводящая к расщеплению пищевых веществ до мономеров, способных всасываться -называется пищеварительным конвейером. Пищеварительный конвейер - это сложный химический конвейер с выраженной преемственностью процессов переработки пищи во всех отделах. Пищеварение является главным компонентом функциональной системы питания.

Процесс пищеварения осуществляется в желудочно-кишечном тракте, который представляет собой пищеварительную трубку вместе с железистыми образованиями. Желудочно-кишечный тракт выполняет следующие функции: (механическая, энергетическая, моторная, гомеостатическая).

* Двигательная или моторная функция, осуществляется за счет мускулатуры пищеврительного аппарата и включает в себя процессы жевания в полости рта, глотания, перемещения химуса по пищеварительному тракту и удаления из организма непереваренных остатков.

* Секреторная функция, заключается в выработке железистыми клетками пищеварительных соков: слюны, желудочного сока, сока поджелудочной железы, кишечного сока, желчи. Эти соки содержат ферменты, которые расщепляют белки, жиры и углеводы на простые химические соединения. Минеральные соли, витамины, вола поступают в кровь в неизменном виде.

* Инкреторная функция связана с образованием в пищеварительном тракте некоторых гормонов, которые оказывают воздействие на процесс пищеварения. К таким гормонам относятся: гастрин, секретин, холецистокинин-панкреозимин, мотилин и многие другие гормоны, которые влияют на моторную и секреторную функции желудочно-кишечного тракта.

* Экскреторная функция пищеварительного тракта выражается в том, что пищеварительные железы выделяют в полость желудочно-кишечного тракта продукты обмена, например, аммиак, мочевину и др., соли тяжелых металлов, лекарственные вещества, которые затем удаляются из организма.

* Всасывательная функция. Всасывание - это проникновение различных веществ через стенку желудочно-кишечного тракта в кровь и лимфу. Всасыванию подвергаются в основном продукты гидролитического расщепления пищи — моносахара, жирные кислоты и глицерин, аминокислоты и др.

В зависимости от локализации процесса пищеварения его делят на внутриклеточное и внеклеточное.

Внутриклеточное пищеварение - это гидролиз пищевых веществ, которые попадают внутрь клетки в результате фагоцитоза или пиноцитоза. Эти пищевые вещества гидролизуются клеточными (лизосомальными) ферментами либо в цитозоле, либо в пищеварительной вакуоли, на мембране которой фиксированы ферменты. В организме человека внутриклеточное пищеварение имеет место в лейкоцитах и в клетках лимфо-ретикуло-гистиоцитарной системы.

Внеклеточное пищеварение делится на дистантное (полостное) и контактное (пристеночное, мембранное).

Дистантное (полостное) пищеварение характеризуется тем, что ферменты в составе пищеварительных секретов осуществляют гидролиз пищевых веществ в полостях желудочно-кишечного тракта. Дистантным оно называется потому, что сам процесс пищеварения осуществляется на значительном расстоянии от места образования ферментов.

Контактное (пристеночное, мембранное) пищеварение осуществляется ферментами, фиксированными на клеточной мембране. Структуры, на которых фиксированы ферменты, представлены в тонком отделе кишечника гликокаликсом -сетевидным образванием из отростков мембраны микроворсинок. Первоначально гидролиз пищевых веществ начинается в просвете тонкой кишки под влиянием ферментов поджелудочной железы. Непосредственно у мембраны гидролиз образовавшихся димеров производят фиксированные -на ней собственно кишечные ферменты. Эти ферменты синтезируются в энтероцитах и переносятся на мембраны их микроворсинок. Наличие в слизистой оболочки тонкой кишки складок, ворсинок, микроворсинок увеличивает внутреннюю поверхность кишки в 300-500 раз, что обеспечивает гидролиз и всасывание на огромной поверхности тонкой кишки.

В зависимости от происхождения ферментов пищеварение делится на три типа:

* аутолитическое - осуществляется под влиянием ферментов, содержащихся в пищевых продуктах;

* симбионтное – под влиянием ферментов, которые образуют симбионты (бактерии, простейшие) макроорганизма.;

* собственное - осуществляется ферментами, которые синтезируются в данном макроорганизме.                                           " —

Методы изучения функции пищеварительного тракта. В 1942 году русский хирург В.А.Басов провел операцию наложения фистулы желудка у животных. Фистула желудка - это искусственно созданное сообщение полости желудка с внешней средой. У таких животных можно в любое время получить~ желудочное содержимое и исследовать его. Однако с помощью этого метода нельзя получить чистый желудочный сок.

Получить чистый желудочный сок у животных с фистулой желудка можно только после дополнительной операции - эзофаготомии - пересечения пищевода. Во время кормления такого животного (" мнимое кормление" ) пища не поступает в желудок, в нем выделяется чистый желудочный сок. Операция наложения фистулы желудка с одновременной эзофаготомией позволяет изучать рефлекторные влияния с рецепторов полости рта и глотки на деятельность желез желудка. Однако этот метод не дает возможности исследовать особенности воздействия на секрецию желудочных желез самой пищи и продуктов ее расщепления, находящихся в желудке.

Немецким исследователем Р. Гейденгайном был разработан метод получения изолированного желудочка, который позволят получить чистый желудочный сок. Отделение желудочного сока в маленьком желудочке, изолированном по способу Гейденгайна, происходило через 30-40 минут от начала кормления, в то время как в опыте " мнимого кормления" отделение сока начиналось через 5-7 минут. Изучив методику изолирования желудочка Р. Гейденгайна, И. П. Павлов пришел к выводу, что этот желудочек денервирован и с его помощью можно изучить только гуморальную фазу желудочной секреции. И. П. Павлов предложил новую методику изолирования маленького желудочка, которая позволяла получать чистый желудочный сок на протяжении всего периода пищеварения.

Секреторная и моторная деятельность кишечника изучается у животных с помощью изолированных отрезков кишки, один или оба конца которых выводят наружу.

Для изучения секреторной и моторной деятельности желудочно-кишечного тракта у человека используются зондовые и беззондовые методы.

50. Пищеварение в полости рта.

Пищеварение в полости рта - это первое звено в сложной цепи процессов ферменативного расщепления пищевых веществ до мономеров. Пищеварительные функции полости рта включают в себя апробирование пищи на съедобность, механическую переработку пищи и частичную химическую ее обработку.

Моторная функция в полости рта начинается с акта жевания. Жевание -физиологический акт, который обеспечивает измельчение пищевых веществ, смачивание их слюной и формирование пищевого комка. Жевание обеспечивает качество механической обработки пищи в полости рта. Оно оказывает влияние на процесс пищеварения в других отделах пищеварительного тракта, изменяя их секреторную и моторную функции.

Одним из методов изучения функционального состояния жевательного аппарата является мастикациография - запись движений нижней челюсти при жевании. На записи, которая называется мастикациограммой можно выделить жевательный период, состоящий из 5 фаз (рис. 31).

* 1 фаза - фаза покоя;

* 2 фаза - введение пищи в полость рта (первое восходящее колено записи, которое начинается от линии покоя);

* 3 фаза - ориентировочное жевание или начальная жевательная функция, она соответствует процессу апробации механических свойств пищи и начальному ее дроблению;

* 4 фаза - основная или истинная фаза жевания, она характеризуется правильным чередованием жевательных волн, амплитуда и продолжительность которых определяется величиной порции пищи и ее консистенцией;

* 5 фаза - формирование пищевого комка имеет вид волнообразной кривой с постепенным уменьшением амплитуды волн.

Характер мастикациограммы зависит в основном от механических свойств пищи и ее объема. Изменения мастикациограммы происходят также при нарушении целостности зубных рядов, при заболеваниях зубов и пародонта, при заболеваниях слизистой оболочки полости рта и др.

Жевание представляет собой саморегуляторный процесс, в основе которого лежит функциональная система жевания. Полезным приспособительным результатом этой функциональной системы является пищевой комок, сформированный в процессе жевания и подготовленный для глотания. Функциональная система жевания формируется для каждого жевательного периода.

При поступлении пищи в полость рта происходит раздражение рецепторов слизистой оболочки в такой же последовательности: механо-, термо- и хеморецепторы. Возбуждение от этих рецепторов по чувствительным волокнам язычного (ветвь тройничного нерва), языкоглоточного, барабанной струне (ветвь лицевого нерва) и верхнегортанного нерва (ветвь блуждающего нерва) поступает в чувствительные ядра этих нервов продолговатого мозга (ядро салитарного тракта и ядро тройничного нерва). Далее возбуждение по специфическому пути доходит до специфических ядер зрительных бугров, где происходит переключение возбуждения, после которого оно поступает в корковый отдел орального анализатора. Здесь на основе анализа и синтеза поступающих афферентных возбуждений принимается решение о съедобности поступивших в полость рта веществ. Несъедобная пища отвергается (выплевывается), что является одной из важных защитных функций полости рта. Съедобная пища остается в полости рта и жевание продолжается. В этом случае к потоку афферентных импульсов присоединяется возбуждение от механорецепторов пародонта - опорного аппарата зуба.

От афферентных путей на уровне ствола мозга отходят коллатерали к ядрам ретикулярной формации, которая входит в состав экстрапирамидной системы и обеспечивает эфферентную функцию. От двигательных ядер ретикулярной формации ствола мозга (которые являются двигательными ядрами тройничного, подъязычного и лицевого нервов) в нисходящем направлении в составе эфферентных волокон тройничного, подъязычного и лицевого нервов импульсы поступают к мышцам, обеспечивающим жевание: собственно жевательным, мимическим и мышцам языка. Произвольное сокращение жевательных мышц обеспечивается участием коры больших полушарий головного мозга.

51.В акте жевания и формировании пищевого комка обязательное участие принимает слюна. Слюна - это смесь секретов трех пар крупных слюнных желез и множества мелких железок, расположенных в слизистой оболочке полости рта. К секрету, выделяемому из выводных потоков слюнных желез, примешиваются эпителиальные клетки, частицы пищи, слизь, слюнные тельца (нейтрофильные лейкоциты, иногда лимфоциты), микроорганизмы. Такая слюна, смешанная с различными включениями, называется ротовой жидкостью. Состав ротовой жидкости изменяется в зависимости от характера пищи, состояния организма, а также под влиянием факторов внешней среды.

Секрет слюнных желез содержит около 99% воды и 1% сухого остатка, в который входят анионы хлоридов, фосфатов, сульфатов, бикарбонатов, иодитов, бромидов, фторидов. В слюне содержатся катионы натрия, калия, магния, кальция, а также микроэлементы (железо, медь, никель и др.). Органические вещества представлены в основном белками. В слюне имеются самые различные по происхождению белки в том числе и белковое слизистое вещество - муцин. В слюне содержатся азотсодержащие компоненты: мочевина, аммиак, креатинин и др.

Функции слюны.

1. Пищеварительная функция слюны выражается в том, что она смачивает пищевой комок и подготавливает его к перевариванию и проглатыванию, а муцин слюны склеивает порцию пищи в самостоятельный комок. В слюне обнаружено свыше 50 ферментов, которые относятся к гидролазам, оксиредуктазам, трансфераэам, липазам, изомеразам. В слюне в небольших количествах обнаружены протеазы, пептидазы, кислая и щелочная фосфатазы. В слюне содержится фермент калликреин, который принимает участие в образовании кининов, расширяющих кровеносные сосуды.

Несмотря на то, что пища в полости рта находится короткое время - около 15 с, пищеварение в полости рта имеет большое значение для осуществления дальнейших процессов расщепления пищи, т. к. слюна, растворяя пищевые вещества, способствует формированию вкусовых ощущений и влияет на аппетит. В полости рта под влиянием ферментов слюны начинается химическая переработка пищи. Фермент слюны амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы, а второй фермент - мальтаза - расщепляет мальтозу до глюкозы.

2. Защитная функция, слюны выражается в следующем:

* слюна защищает слизистую оболочку полости рта от пересыхания, что особенно важно для человека, использующего в качестве средства общения речь;

* белковое вещество слюны муцин способен нейтрализовать кислоты и щелочи;

* в слюне содержится ферментоподобное белковое вещество лизоцим (мурамидаза), который обладает бактериостатическим действием и принимает участие в процессах регенерации эпителия слизистой оболочки полости рта;

* ферменты нуклеазы, содержащиеся в слюне, участвуют в деградации нуклеиновых кислот вирусов и таким образом защищают организм от вирусной инфекции;

* в слюне обнаружены факторы свертывания крови, от активности которых зависит местный гемостаз, процессы воспаления и регенерации слизистой оболочки полости рта;

* в слюне обнаружено вещество, стабилизирующее фибрин (подобно фактору XIII плазмы крови);

* в слюне обнаружены вещества, препятствующие свертыванию крови (антитромбинопластины и антитромбины) и вещества, обладающие фибринолитической активностью (плазминоген и др.);

* в слюне содержится большое количество иммуноглобулинов, что защищает организм от попадания патогенной микрофлоры.

3. Трофическая функция слюны. Слюна является биологической средой, которая контактирует с эмалью зуба и является для нее основным источником кальция, фосфора, цинка и других микроэлементов.

4. Выделительная функция слюны. В составе слюны могут выделяться продукты обмена - мочевина, мочевая кислота, некоторые лекарственные вещества, а также соли свинца, ртути и др.

Слюноотделение осуществляется по рефлекторному механизму. Различают условно-рефлекторное и безусловно-рефлекторное слюноотделение.

Условно-рефлекторное слюноотделение вызывают вид, запах пищи, звуковые раздражители, связанные с приготовлением пищи, а также разговор и воспоминание о пище. При этом возбуждаются зрительные, слуховые, обонятельные рецепторы. Нервные импульсы от них поступают в корковый отдел соответствующего анализатора, а затем в корковое представительство центра слюноотделения. От него возбуждение идет к бульбарному отделу центра слюноотделения, эфферентные команды которого поступают к слюнным железам.

Безусловно-рефлекторное слюноотделение происходит при поступлении пищи в ротовую полость. Пища раздражает рецепторы слизистой оболочки. Афферентный путь секреторного и двигательного компонентов акта жевания является общим. Нервные импульсы по афферентным путям поступают в центр слюноотделения, который находится в ретикулярной формации продолговатого мозга и состоит из верхнего и нижнего слюноотделительных ядер (рис. 32).

Эфферентный путь слюноотделения представлен волокнами парасимпатического и симпатического отделов вегетативной нервной системы. Парасимпатическая иннервация слюнных желез осуществляется вегетативными волокнами клеток слюноотделительных ядер, проходящих в составе языкоглоточного и лицевого нервов.

От верхнего слюноотделительного ядра возбуждение направляется к подчелюстной и подъязычной железам. Преганглионарные волокна идут в составе барабанной струны до подчелюстного и подъязычного вегетативных ганглиев. Здесь возбуждение переключается на постганглионарные волокна, которые идут в составе язычного нерва к подчелюстной и подъязычной слюнным железам.

От нижнего слюноотделительного ядра возбуждение передается по преганглионарным волокнам в составе малого каменистого нерва до ушного ганглия, здесь возбуждение переключается на постганглионарные волокна, которые в составе ушно-височного нерва подходят к околоушной слюнной железе.

Симпатическая иннервация слюнных желез осуществляется симпатическими нервными волокнами, которые начинаются от клеток боковых рогов спинного мозга на уровне 2-6 грудных сегментов. Переключение возбуждения с пре- на постганглионарные волокна осуществляется.в верхнем шейном симпатическом узле, от которого постганглионарные волокна по ходу кровеносных сосудов достигают слюнных желез.

Раздражение парасимпатических волокон, иннервирующих слюнные железы, приводит к отделению большого количества жидкой слюны, которая содержит много солей и мало органических веществ. Раздражение симпатических волокон вызывает отделение небольшого количества густой, вязкой слюны, которая содержит мало солей и много органических веществ.

Большое значение в регуляции слюноотделения имеют гуморальные факторы, к которым относятся гормоны гипофиза, надпочечников, щитовидной и поджелудочной желез, а также продукты метаболизма.

Отделение слюны происходит в точном соответствии с качеством и количеством принимаемых пищевых веществ. Например, при приеме воды слюна почти не отделяется. При поступлении в полость рта вредных веществ происходит отделение большого количества жидкой слюны, которая омывает полость рта от этих вредных веществ и т. д. Такой приспособительный характер слюноотделения обеспечивается центральными механизмами регуляции деятельности слюнных желез, а запускаются эти механизмы информацией, поступающей от рецепторов полости рта.

52. Глотание. После того, как сформировался пищевой комок происходит глотание. Это рефлекторный процесс, в котором выделяют три фазы:

* ротовую (произвольную и непроизвольную);

* глоточную (быструю непроизвольную);

* пищеводную (медленную произвольную).

Глотательный цикл длится около 1 с. Координированными сокращениями мышц языка и щек пищевой комок перемещается к корню языка, что приводит к раздражению рецепторов мягкого неба, корня языка и задней стенки глотки. Возбуждение от этих рецепторов по глоточным нервам поступает в центр глотания, расположенный в продолговатом мозге, от которого идут эфферентные импульсы к мышцам полости рта, гортани, глотки и пищевода в составе тройничных, подъязычных, языкоглоточных и блуждающих нервов. Сокращение мышц, приподнимающих мягкое небо, обеспечивает закрытие входа в полость носа, а поднятие гортани закрывает вход в дыхательные пути. Во время акта глотания происходят сокращения пищевода, которые имеют характер волны, возникающей в верхней части и распространяющейся в сторону желудка. Моторика пищевода регулируется в основном эфферентными волокнами блуждающего и симпатического нервов и интрамуральными нервными образованиями пищевода.

Центр глотания расположен рядом с центром дыхания продолговатого мозга и находится с ним в реципрокных отношениях (при глотании дыхание задерживается).

Пищеварение в желудке.

Функции желудка. Пищеварительными функциями желудка являются:

* депонирование химуса (содержимого желудка);

* механическая и химическая переработка поступающей пищи;

* эвакуация химуса в кишечник.

Кроме того, желудок осуществляет гомеостатическую функцию (например, поддержание рН и др.) и участвует в кроветворении (выработка внутреннего фактора Кастла).

Экскреторная функция желудка заключается в выделении продуктов метаболизма, лекарственных веществ, солей тяжелых металлов.

Моторная функция желудка. Двигательная функция желудка осуществляется за счет сокращения гладких мышц, расположенных в стенке желудка. Моторная функция желудка обеспечивает в желудке депонирование принятой пищи, перемешивание ее с желудочным соком, перемещение содержимого желудка к выходу в кишку и, наконец, порционную эвакуацию желудочного содержимого в двенадцатиперстную кишку,

В желудке различают два основных вида движения - перистальтические и тонические. Перистальтические движения осуществляются за счет сокращения циркулярных мышц желудка. Эти движения начинаются на большой кривизне в участке, примыкающем к пищеводу, где находится кардиальный водитель ритма. Перистальтическая волна, идущая по телу желудка, перемещает в пилорическую часть небольшое количество химуса, который прилегает к слизистой оболочке и в наибольшей степени подвергается переваривающему действию желудочного сока. Большая часть перистальтических волн гасится в пилорическом отделе желудка, Некоторые из них распространяются по пилорическому отделу с увеличивающейся амплитудой (предполагают наличие второго водителя ритма в пилорическом отделе желудка), что приводит к выраженным перистальтическим сокращениям этого отдела, повышению давления и часть содержимого желудка переходит в двенадцатиперстную кишку.

Второй вид сокращений желудка - тонические сокращения. Они возникают за счет изменения тонуса мышц, что приводит к уменьшению объема желудка и повышению давления в нем. Тонические сокращения способствуют перемешиванию содержимого желудка и пропитыванию его желудочным соком, что значительно облегчает ферментативное переваривание пищевой кашицы.

Секреторная деятельность желудка. Состав и свойства желудочного сока.

Желудочный сок продуцируется железами желудка, расположенными в его слизистой оболочке. В области свода желудка железы содержат главные гландулоциты (главные клетки), которые продуцируют пепсиногены; париетальные клетки (обкладочные клетки) синтезируют и выделяют соляную кислоту; мукоциты (добавочные клетки) выделяют мукоидный секрет. В силу различия в строении фундальных и пилорических желез они продуцируют сок разного состава. Сок фундального отдела желудка содержит пепсины, много соляной кислоты. Сок этого отдела желудка имеет ведущее значение в желудочном пищеварении. Сок пилорического отдела содержит мало ферментов, много слизи, мало соляной кислоты.

При обычных условиях за сутки у человека выделяется 2 - 2, 5 л желудочного сока. В состав желудочного сока входят органические вещества: пепсин, гастриксин, ренин, лизоцим, муцин, мукоиды, аминокислоты, мочевина, мочевая кислота; неорганические вещества: соляная кислота, хлориды, сульфаты, фосфаты, бикарбонаты, натрий, калий, кальций, магний и др. Желудочный сок имеет кислую реакцию, его рН равен 1, 5 - 1, 8.

Главный ферментативный процесс в желудке заключается в начальном расщеплении белков до альбумоз и пептонов. Основными ферментами, которые гидролизуют белки, являются пепсины. Главные гландулоциты желудочных желез синтезируют и выделяют пепсиногены двух групп. Пепсиногены первой группы (их 5) образуются в своде желудка, а второй группы (2) - в пилорической части желудка и начальном отделе двенадцатиперстной кишки. Пепсиногены активируются соляной кислотой и таким образом образуются несколько пепсинов, которые гидролизуют белки с максимальной скоростью при рН 1, 5 - 2, 0. Другой протеолитический фермент, близкий к пепсинам, гастриксин гидролизует белки при рН 3, 2 - 3, 5. Возможность пепсинов активно функционировать при различных значениях рН обеспечивает гидролиз белков в различных слоях химуса при разной кислотности. Фермент ренин (химозин) створаживает молоко в присутствии солей кальция.

В желудочном соке содержится фермент липаза, но она мало активна и гидролизует только эмульгированные жиры. Гидролиз углеводов в желудке осуществляется под влиянием ферментов слюны.

Важной составной частью желудочного сока являются мукоиды (желудочная слизь), которые покрывают слизистую желудка по всей поверхности и предохраняют ее от механических повреждений и от самопереваривания. К числу мукоидов относится гастромукопротеид (внутренний фактор Кастла), который необходим для всасывания витамина В-12 при взаимодействии с которым образуется антианемический фактор.

Из неорганических компонентов желудочного сока наибольшее значение имеет соляная кислота. Она находится в свободном и связанном состоянии, ее содержание в желудочном соке составляет 0, 3 - 0, 5%.

Функции соляной кислоты:

* участвует в антибактериальном действии желудочного сока;

* вызывает денатурацию и набухание белков, что способствует их последующему расщеплению пепсинами;

* активирует пепсиногены;

* создает кислую среду, которая необходима для действия пепсинов;

* участвует в регуляции деятельности пищеварительного тракта.

Факторы, которые стимулируют секрецию соляной кислоты в желудке: гастрин, гистамин, продукты гидролиза белков.

53. Фазы желудочной секреции. Отделение желудочного сока происходит в две фазы: первая - сложно-рефлекторная (" мозговая" ) и вторая - нервно-гуморальная.

Сложно-рефлекторная (" мозговая" ) фаза желудочной секреции называется так потому, что она состоит из двух компонентов: условно-рефлекторного и безусловно-рефлекторного. Условно-рефлекторное отделение желудочного сока происходит при раздражении обонятельных, зрительных, слуховых рецепторов запахом, видом пищи, разговором о пище и звуковыми раздражителями, связанными с приготовлением пищи. Желудочный сок, отделяемый в этот период И.П. Павлов назвал запальным или аппетитным. Он представляет собой ценность, т.к. богат ферментами, его отделение сопровождается ощущением аппетита и создает условия для дальнейшего нормального пищеварения в желудке и кишечнике. При поступлении пищи в полость рта начинается безусловно-рефлекторное отделение желудочного сока.

На первую фазу сокоотделения желудка наслаивается вторая, которая состоит из двух компонентов - желудочной и кишечной фазы. Желудочная фаза наступает при соприкосновении пищевого содержимого со слизистой оболочкой желудка. Отделение желудочного сока в эту фазу осуществляется за счет раздражения механорецепторов слизистой оболочки желудка, а затем за счет гуморальных факторов - продуктов гидролиза пищи, которые поступают в кровь и возбуждают железы желудка. Механическое раздражение желудка приводит к высвобождению гормона гастрина, который стимулирует железы желудка. Высвобождение гастрина в желудочную фазу секреции усиливается продуктами гидролиза белка, некоторыми аминокислотами и экстрактивными веществами мяса и овощей. Кишечная фаза желудочной секреции начинается с момента поступления химуса в двенадцатиперстную кишку. Химус раздражает механо-, осмо- и хеморецепторы слизистой оболочки кишки и рефлекторно изменяет интенсивность желудочной секреции. Кроме того, влияние на желудочное сокоотделение в эту фазу оказывают местные гормоны (секретин, холицистокинин-панкреозимин), выработка которых стимулируется поступающим в двенадцатиперстную кишку кислым желудочным химусом.


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 302; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.237 с.)
Главная | Случайная страница | Обратная связь