Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вводы с маслобарьерной изоляцией.



У вводов с маслобарьерной изоляцией (рис. 1) основной изоляцией между токоведущим стержнем и заземленными элементами служит масляный промежуток, разделенный для повышения электрической прочности на слои барьерами из твердого диэлектрика.

 

Рис. 1. Ввод с маслобарьерной изоляцией.
1 — контактный зажим; 2— дыхательная трубка; 3— расширитель; 4, 8, 13, 15 — фланцы; 5 — верхняя покрышка; 6 — дистанцирующая шайба; 7 — заземленный экран; 9 — внутренний цилиндр; 10 — соединительная втулка; 11 — токоведущая труба с бумажной подмоткой; 12 — внешний цилиндр; 14 — нижняя покрышка.
Конструкция маслобарьерных вводов состоит из верхней и нижней фарфоровых покрышек, внутри которых проходит токоведущий стержень с цилиндрами, пространство между которыми заполнено трансформаторным маслом. Соединение покрышек между собой осуществляется с помощью армированных фланцев, механически связанных с переходной деталью, соединительной втулкой.
Для крепления токоведущего стержня, маслорасширителя, дугогасительных устройств и экранов на фарфоровых покрышках предусмотрены соответственно армированные фланцы меньшего диаметра. Позднее завод отказался от армированного соединения фарфоровых покрышек и применил бесфланцевое соединение деталей ввода с помощью специального пружинного стяжного устройства, которое одновременно является устройством, компенсирующим температурные изменения длины трубы и стягиваемых деталей.
Для регулирования напряженности электрического поля изолирующего промежутка вводов на бумажно-бакелитовые цилиндры зачастую накладывают уравнительные прокладки, поверх которых наносится бумажное покрытие. Поверхности бумажно-бакелитовых цилиндров не лакируют.
На токоведущий стержень для уменьшения напряженности электрического поля вблизи него накладывают слой специальной бумаги или уравнительную обкладку первого внутреннего цилиндра соединяют со стержнем,
В вводах с выводами для подключения ПИН на последний цилиндр изоляционного каркаса предварительно наносят два-три слоя бумаги, поверх которой накладывают металлическую обкладку — фольгу. На фольгу наматывают несколько слоев бумаги в зависимости от необходимой емкости измерительного конденсатора. Затем накладывают вторую металлическую обкладку, которую, так же как и первую, с помощью гибкого проводника выводят наружу ввода. Вводы с маслобарьерной изоляцией в маслоподпорном исполнении имеют общий с силовым трансформатором объем масла и выпускаются заводом на номинальное напряжение 66 кВ. Эти вводы не имеют нижней фарфоровой покрышки, поэтому на время транспортировки и хранения взамен ее для защиты бумажно-бакелитовых цилиндров от увлажнения устанавливается защитный кожух, заполненный маслом. Верхняя фарфоровая покрышка служит внешней изоляцией ввода и является также резервуаром для масла, заполняющего ввод.
При установке маслоподпорных вводов взамен вводов с бумажно-масляной изоляцией из-за укороченной нижней части ввода в ряде случаев требуется применение дополнительных барьеров вблизи заземленных деталей силового трансформатора. Поэтому способ установки маслоподпорных вводов в каждом отдельном случае должен согласовываться с трансформаторными заводами.

 

16 ВОПРОС

 

Линейные изоляторы предназначены для изоляции и крепления проводов на воздушных линиях и в распределительных устройствах электрических станций и подстанций. Изготавливаются они из фарфора или закаленного стекла. По конструкции изоляторы разделяют на штыревые и подвесные.

Штыревые изоляторы применяются на воздушных линиях напряжением до 1 кВ и на ВЛ 6-35 кВ (35 кВ - редко и только для проводов малых сечений). На номинальное напряжение 6-10 кВ и ниже изоляторы изготавливают одноэлементными, а на 20-35 кВ - двухэлементными.

Подвесной изолятор тарельчатого типа наиболее распространен на воздушных линиях напряжением 35 кВ и выше. Подвесные изоляторы состоят из фарфоровой или стеклянной изолирующей части и металлических деталей – шапки и стержня, соединяемых с изолирующей частью посредством цементной связки.

Для воздушных линий в районах с загрязненной атмосферой разработаны конструкции изоляторов грязестойкого исполнения с повышенными разрядными характеристиками и увеличенной длиной пути утечки.

 

Подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими и натяжными. Первые монтируют на промежуточных опорах, вторые – на анкерных. Число изоляторов в гирлянде зависит от напряжения линии. Например, в поддерживающих гирляндах воздушных линий с металлическими и железобетонными опорами 35 кВ должно быть 3 изолятора, 110 кВ – 6 – 8, 220 кВ – 10 - 14 и т. д..

 

 

Штыревые изоляторы крепятся на опорах при помощи крюков или штырей. Если требуется повышенная надежность, то на анкерные опоры устанавливают не один, а два и даже три штыревых изолятора.

 

Линейные штыревые изоляторы

Конструкции подвесных тарельчатых изоляторов

 

 

17 ВОПРОС

 

Электрический разряд в газах, прохождение электрического тока через газовую среду под действием электрического поля, сопровождающееся изменением состояния газа. Многообразие условий, определяющих исходное состояние газа (состав, давление и т. д.), внешних воздействий на газ, форм, материала и расположения электродов, геометрии возникающего в газе электрического поля и т. п. приводит к тому, что существует множество видов Э. р. в г., причём его законы сложнее, чем законы прохождения электрического тока в металлах и электролитах. Э. р. в г. подчиняются Ома закону лишь при очень малой приложенной извне разности потенциалов, поэтому их электрические свойства описывают с помощью вольтамперной характеристики (рис. 1 и 3).

Газы становятся электропроводными при их ионизации . Если Э. р. в г. происходит только при вызывающем и поддерживающем ионизацию внешнем воздействии (при действии т. н. внешних ионизаторов), его называют несамостоятельным газовым разрядом. Э. р. в г., продолжающийся и после прекращения действия внешнего ионизатора, называется самостоятельным.

Когда ионизация газа происходит при непрерывном действии внешнего ионизатора и малом значении разности потенциалов между анодом и катодом в газе, начинается «тихий разряд». При повышении разности потенциалов (напряжения) сила тока тихого разряда сперва увеличивается пропорционально напряжению (участок кривой OA на рис. 1), затем рост тока с ростом напряжения замедляется (участок кривой AB), и когда все заряженные частицы, возникшие под действием ионизатора в единицу времени, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок ВС). При дальнейшем росте напряжения ток снова возрастает и тихий разряд переходит в несамостоятельный лавинный разряд (участок СЕ на рис. 1). В этом случае сила тока определяется как интенсивностью воздействия ионизатора, так и газовым усилением, которое зависит от давления газа и напряжённости электрического поля в пространстве, занимаемом разрядом.


Поделиться:



Последнее изменение этой страницы: 2019-04-11; Просмотров: 504; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь