Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


КОНСТРУКТИВНЫЕ СХЕМЫ И НАЗНАЧЕНИЕ ОСНОВНЫХ ЭЛЕМЕНТОВ ТРАНСФОРМАТОРА



2.1. Основные элементы трансформатора

Известно, что развитие энерговооруженности промышленных предприятий, применение повышенного напряжения основных сетей энергосистемы и систем внутризаводского электроснабжения обусловливает рост парка силовых трансформаторов и их технических показателей.

Трансформатор высокого напряжения представляет собой сложное устройство, состоящее из большого числа конструктивных элементов, основными из которых являются: магнитная система (магнитопровод), обмотки, изоляция, выводы обмоток, бак, охлаждающее устройство, механизм регулирования напряжения, защитные и измерительные устройства. Конструктивная схема масляного трансформатора представлено на рис. 2.1.

Рис. 2.1. Конструктивная схема масляного трансформатора:

I— выхлопная труба; 2 — газовое реле;
3— ввод НН; 4— ввод ВН; 5— обмотки высшего и низшего напряжений; 6—радиаторы системы охлаждения; 7 —магнитопровод; 8— кран для слива масла; 9 — тележка с катками; 10 — бак;

II— устройство регулирования под на
грузкой (РПН); 12 — термосифонныйфильтр; 13 — воздухоосушитель; 14 —
указатель уровня масла; 15 — расширитель; 16 — соединительная трубка

 

В магнитной системе трансформатора проходит магнитный поток. Магнитопровод является конструктивной и механической основой трансформатора. Он выполнен из отдельных листов электротехнической стали, изолированных друг от друга. В настоящее время применяется холоднокатаная сталь марок 3405, 3406, т.е. сталь с определенной ориентацией зерен, допускающая индукцию до 1,7 Тл. Применение такой стали позволяет значительно уменьшить сечение магнитопровода за счет большой допустимой магнитной индукции, а также диаметр витков обмотки, массу и габаритные размеры трансформаторов. Для листов трансформаторной стали широко применяется изоляция лаком с толщиной слоя 0,01 мм. Лаковая пленка создает достаточно надежную изоляцию между листами, обеспечивает хорошее охлаждение магнитопровода, обладает высокой нагревостойкостью и не повреждается при сборке.

Обмотки трансформаторов могут быть концентрическими и чередующимися. В первом случае обмотки ВН и НН выполняют в виде цилиндров и располагают на стержне концентрически одна относительно другой (рис. 2.2, а). Такое выполнение принято в большинстве силовых трансформаторов. Во втором случае обмотки ВН и НН выполняются в виде невысоких цилиндров с одинаковыми диаметрами и располагаются на стержне одна над другой (рис. 2.2, б). Такая обмотка применяется для специальных электропечных трансформаторов и для сухих трансформаторов, так как обеспечивает лучшее охлаждение обмоток.

Изоляция трансформатора очень важна, т. е. надежность работы трансформатора определяется в основном надежностью его изоляции. В масляных трансформаторах основной изоляцией является масло в сочетании с твердыми диэлектриками: бумагой, электрокартоном, гетинаксом. В сухих трансформаторах широко применяются новые виды изолирующих материалов повышенной нагревостойкости на основе кремнийорганических материалов.

Рис. 2.2. Обмотки трансформатора; а — концентрические; б — чередующиеся

 

 

В бак трансформатора помещают активную часть вместе с отводами и переключающими устройствами для регулирования напряжения. Основные части бака — стенки, дно и крышка. Крышку используют для установки вводов, выхлопной трубы, крепления расширителя, термометров и других элементов. На стенках бака укрепляют охлаждающие устройства — радиаторы.

Для уменьшения потерь от потоков рассеяния стальные баки экранируются с внутренней стороны пакетами электротехнической стали или пластинами из немагнитных материалов (меди, алюминия).

Расширитель трансформатора представляет собой цилиндрический сосуд, соединенный с баком трубопроводом и служащий для уменьшения площади соприкосновения масла с воздухом. Объем расширителя составляет 9... 10% объема масла в трансформаторе и системе охлаждения. Бак трансформатора полностью залит маслом, изменение объема которого при нагреве и охлаждении приводит к колебанию уровня масла в расширителе, при этом воздух вытесняется из расширителя или всасывается в него. Масло очень гигроскопично, и если расширитель непосредственно связан с атмосферой, то влага из воздуха поступает в масло, резко снижая его изоляционные свойства. Для предотвращения этого расширитель связан с окружающей средой через силикагелевый воздухоосушителъ (рис. 2.3).

Рис. 2.3. Воздухоосушитель:

1 — стенка бака; 2 — труба для присоединения воздухоосушителя; 3 — соединительная гайка; 4 — смотровое окно патрона с индикаторным силикагелем; 5 — масляный затвор; 6 — указатель уровня масла в затворе

 

Силикагель поглощает влагу из всасываемого воздуха. Силикагелевый фильтр полностью не осушает воздух, поэтому постепенно влажность воздуха в расширителе повышается. Для предотвращения этого применяют герметичные баки с газовой подушкой из инертного газа или свободное пространство в расширителе заполняют инертным газом (азотом), поступающим из специальных эластичных емкостей (рис. 2.4). Возможно также применение специальной пленки-мембраны в расширителе на границе масло — воздух.

Выхлопная (предохранительная) труба на крышке бака защищает его от разрыва при интенсивном выделении газа во время крупных повреждений внутри трансформатора (короткого замыкания). Верхний конец выхлопной трубы герметично закрывается диафрагмой из тонкого стекла или медной фольги. При взрывоопасных выделениях газа диафрагма разрушается, давление в баке понижается, что и предохраняет его от деформации. Верхняя полость выхлопной трубы и воздушное пространство над поверхностью масла в расширителе соединены трубкой. Это необходимо для выравнивания давлений с обеих сторон диафрагмы при изменении объема масла в нормальных эксплуатационных условиях.

Вместо выхлопной трубы в настоящее время находят применение механические пружинные предохранительные клапаны, устанавливаемые на верхней части стенки трансформатора. Клапан срабатывает при повышении давления в баке до 80 кПа и закрывается при давлении ниже 35 кПа.

Маслоуказателъ служит для контроля уровня масла в трансформаторе. Применяются плоские и трубчатые стеклянные маслоуказатели, работающие по принципу сообщающихся сосудов. На шкале маслоуказателя нанесены три контрольные риски, соответствующие уровням масла в неработающем трансформаторе при температурах -45, +15 и +40 "С. В корпус маслоуказателя встроен также специальный герметичный контакт (геркон), подающий сигнал в случае недопустимого понижения уровня масла в трансформаторе.

 

Рис. 2.4. Схемы конструктивного выполнения азотной защиты масла

в трансформаторах:

а — система с переменным давлением азота над поверхностью масла; б — система с нормальным атмосферным давлением азота и эластичным резервуаром; 1 — бак трансформатора; 2 — эластичный резервуар; 3 — козлы для подвешивания

резервуара

 

Термосифонный фильтр крепится к баку трансформатора и заполняется силикагелем или другим веществом, поглощающим продукты окисления масла. При циркуляции за счет разности плотностей горячего и холодного масла происходит непрерывная его регенерация. Адсорбентом может служить как силикагель, так и активный оксид алюминия, алюмагель и др. Адсорбенты удерживают воду в своих порах, не вступая с ней в химическое соединение. Насыщенный водой адсорбент заменяется, а использованный регенерируется нагреванием до определенной температуры (400... 500 °С). Для индикации насыщения силикагеля в него добавляют хлористый кобальт (около 3%). Примесь хлористого кобальта придает составу голубую окраску. Появление розовой окраски является признаком насыщения состава водой.

Количество адсорбента, засыпаемого в термосифонный фильтр трансформатора, составляет около

1 % залитого в него масла.

Для очистки масла в работающем трансформаторе, находящемся под напряжением, часто используются передвижные адсорберы (рис. 2.5 и 2.6). Расход масла в них составляет 250...400 л/ч.

Для предупреждения окисления масла кроме фильтров и азотной защиты применяются антиокислительные присадки, способствующие поддержанию качества масла длительное время и защищающие другие изоляционные материалы трансформатора. Одной из лучших присадок является 2,6-дитретичный бутилпаракрезол, имеющий название ДБПК. Антиокислительной присадкой может также служить пирамидон (технический) в количестве 3 % от массы масла.

Срок службы масла с антиокислительными присадками увеличивается в 2 — 3 раза, стоимость их относительно небольшая, уход намного проще, чем за другими видами защиты масла. Добавку присадок производят раз в 4...5 лет.

Рис. 2.5. Передвижной адсорбер для регенерации масла:

/ — кран для выпуска воздуха; 2 — выход масла; 3 — фильтрующее устройство; 4 — цапфы для поворота корпуса; 5 — корпус адсорбера; 6 — зернистый адсорбент; 7 — перфорированное дно с сеткой; 8 — вход масла

Рис. 2.6. Схема установки для регенерации масла в трансформаторе,

находящемся в работе:

1 — трансформатор; 2 — подогреватель; 3 — адсорбер; 4 — фильтр-пресс

2.2. Трехобмоточные трансформаторы

Трехобмоточные трансформаторы применяют в основном в качестве понижающих трансформаторов мощностью до 100 MB -А с высшим напряжением до 220 кВ. Мощности обмоток высшего, среднего и низшего напряжений составляют соответственно 100/100/100, 100/100/67 и 100/67/100% от номинальной мощности трансформатора. Сумма нагрузок обмоток среднего и низшего напряжении не должна превышать номинальной мощности трансформатора.

Обмотки трехобмоточных трансформаторов размещают на стержнях концентрически в следующем порядке: обмотку высшего напряжения — снаружи; обмотку низшего напряжения — внутри, у стержня; обмотку среднего напряжения — между обмотками высшего и низшего напряжений. При таком расположении напряжение КЗ между обмотками высшего и среднего напряжений имеет минимальное значение, что позволяет передать большую часть мощности в сеть среднего напряжения с минимальными потерями. Напряжение КЗ между обмотками высшего и низшего напряжений относительно велико, что способствует ограничению тока КЗ в сети низшего напряжения.

   

 

Рис. 2.7. Размещение обмоток (а) и

схема замещения (б) трехфазного

трансформатора с расщепленной

обмоткой низшего напряжения

Разновидностью трехобмоточного трансформатора является трехфазный трансформатор с расщепленной обмоткой низшего напряжения. В таком трансформаторе (рис. 2.7, а) обмотка низшего напряжения каждой фазы выполняется из двух частей (ветвей), расположенных симметрично по отношению к обмотке высшего напряжения. Номинальные напряжения ветвей обмотки одинаковы. Мощность каждой обмотки низшего напряжения составляет часть номинальной мощности трансформатора (при двух ветвях — 1/2, при трех ветвях — 1/3). В трехфазных трансформаторах обе части расщепленной обмотки размещены на общем стержне соответствующей фазы одна над другой, а в однофазных трансформаторах части обмотки размещены на разных стержнях. Каждая ветвь расщепленной обмотки имеет самостоятельные выводы. Допускается любое распределение нагрузки между ветвями расщепленной обмотки, например при двух ветвях одна ветвь может быть полностью нагружена, а вторая отключена, или обе ветви нагружены полностью.

Достоинством трансформаторов с расщепленной обмоткой низшего напряжения является большое сопротивление короткого замыкания между ветвями, что дает возможность ограничить ток КЗ на стороне низшего напряжения, например на подстанциях.

Одной из характеристик трансформатора с расщепленной обмоткой является коэффициент расщепления kp, который для случая двух ветвей равен отношению сопротивления короткого замыкания между ветвями расщепленной обмотки Z2-3 к сопротивлению короткого замыкания между обмоткой высшего напряжения и параллельно соединенными ветвями расщепленной обмотки:

Для однофазных трансформаторов коэффициент расщепления kp = 4, а для трехфазных трансформаторов kp ~ 3,5. Сопротивления лучей в схеме замещения трансформатора с обмоткой низшего напряжения, расщепленной на две ветви (рис. 2.7, б), могут быть определены из следующих выражений:

после подстановки в которые соответствующих значений kp получим:

для однофазных трансформаторов

Z 1=0 и

для трехфазных трансформаторов

 и

Автотрансформатор представляет собой многообмоточный трансформатор, у которого две обмотки связаны электрически. В энергосистемах применение получили трехобмоточные автотрансформаторы — трехфазные и группы из однофазных. Их широко используют по соображениям экономического порядка вместо обычных трансформаторов для соединения эффективнозаземленных сетей с напряжением 1 10 кВ и выше при отношении номинальных напряжений, не превышающем 4.

На рис. 2.8 представлена принципиальная схема двухобмоточного автотрансформатора.

Обмотка А—Ат называется последовательной, а обмотка Ат— X— общей. Вывод А является выводом высшего напряжения, вывод Ат — выводом среднего напряжения. Обмотки трехфазных автотрансформаторов (или групп из трех однофазных автотрансформаторов) соединяют в звезду с заземленной нейтралью X.

Обозначим общее число витков в обеих обмотках автотрансформатора через w1, a число витков в общей обмотке через w2. Тогда число витков в последовательной обмотке будет w1- w2. Отношение n  w1/ w2 представляет собой коэффициент трансформации автотрансформатора.

Рис. 2.8. Принципиальная схема двухобмоточного автотрансформатора

 

Последовательную и общую обмотки рассматривают как первичную и вторичную обмотки трансформатора.

В отличие от трансформатора, где вся мощность с первичной стороны передается на вторичную сторону магнитным полем, в автотрансформаторе часть мощности передается непосредственно — без трансформации — через контактную связь между последовательной и общей обмотками. Полную мощность, передаваемую с первичной стороны автотрансформатора на вторичную, называют проходной, а мощность, передаваемую магнитным полем, — трансформаторной.

Проходная мощность для схемы, показанной на рис. 2.8,

S = U В I В ≈ U С I С . .

Сумма трансформаторной и электрической мощностей равна проходной мощности автотрансформатора:

S = S ТР + S ЭЛ = ( U В + U C ) I В + U C I В  = U В I В  

Отношение трансформаторной мощности к проходной, называется коэффициентом типовой мощности автотрансформатора:

Под номинальной мощностью автотрансформатора понимают его проходную мощность при номинальных условиях. Соответствующую номинальной мощности трансформаторную (электромагнитную) мощность называют типовой мощностью. Размеры и масса автотрансформатора определяются не проходной, а трансформаторной мощностью. Чем ближе к единице отношение UC/UB, тем меньше трансформаторная мощность при заданной проходной мощности. Следовательно, замена трансформатора соответствующим автотрансформатором становится все выгоднее.

Преимущества автотрансформаторов перед трансформаторами той же проходной мощности заключаются в следующем:

для изготовления автотрансформатора требуется меньше меди, стали и изоляционных материалов, поэтому стоимость автотрансформатора меньше;

потери мощности в автотрансформаторе меньше, а его КПД выше;

габаритные размеры автотрансформатора меньше, что позволяет строить их большей проходной мощности и облегчает транспортировку.

Перечисленные преимущества автотрансформаторов тем заметнее, чем меньше разность высшего и среднего напряжений.

Все сказанное ранее относится к двухобмоточным автотрансформаторам.

2.3. Системы охлаждения силовых трансформаторов

При работе трансформатора происходит нагрев обмоток и магнитопровода за счет потерь энергии в них. Предельный нагрев частей трансформатора ограничивается изоляцией, срок службы которой зависит от температуры нагрева. Чем больше мощность трансформатора, тем интенсивнее должна быть система охлаждения.

Приведем краткое описание систем охлаждения трансформаторов.

Естественное воздушное охлаждение трансформаторов осуществляется посредством естественной конвекции воздуха и частичного лучеиспускания в воздухе. Такие трансформаторы получили название «сухих». Условно принято обозначать естественное охлаждение при открытом исполнении С, при защитном исполнении — СЗ, при герметичном исполнении СГ, с принудительной циркуляцией воздуха (дутьем) — СД.

Допустимое превышение температуры обмотки сухого трансформатора над температурой окружающей среды зависит от класса нагревостойкости изоляции и согласно ГОСТ 11677—85 должно быть не больше 60 °С для класса А, 75 °С — для класса Е, 80 °С — для класса В, 100 °С — для класса F, 125°С — для класса Н. Данная система охлаждения малоэффективна, поэтому применяется для трансформаторов мощностью до 1600 кВ • А при напряжении до 15 кВ.

Естественное масляное охлаждение (М) выполняется для трансформаторов мощностью до 16000 кВ-А. В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается маслу, циркулирующему по баку и радиаторам, а затем — окружающему воздуху. При номинальной нагрузке трансформатора в соответствии с Правилами технической эксплуатации (ПТЭ) температура масла в верхних, наиболее нагретых слоях не должна превышать +95°С.

Для лучшей отдачи тепла в окружающую среду бак трансформатора снабжают ребрами, охлаждающими трубами или радиаторами в зависимости от мощности.

Масляное охлаждение с дутьем и естественной циркуляцией масла (Д) применяется для более мощных трансформаторов. В этом случае в навесных охладителях из радиаторных труб (рис. 2.9) помещают вентиляторы. Вентилятор засасывает воздух снизу и обдувает нагретую верхнюю часть труб. Пуск и останов вентиляторов осуществляется автоматически в зависимости от нагрузки и температуры нагрева масла. Трансформаторы с таким охлаждением могут работать при полностью отключенном дутье, если нагрузка не превышает 100 % от номинальной, а температура верхних слоев масла не более 55 "С, а также независимо от нагрузки при отрицательных температурах окружающего воздуха и температуре масла не выше 45 °С (ПТЭ). Максимально допустимая температура масла в верхних слоях при работе трансформатора с номинальной нагрузкой 95 "С.

Форсированный обдув радиаторных труб улучшает условия охлаждения масла, а следовательно, обмоток и магнитопровода трансформатора, что позволяет изготовлять такие трансформаторы мощностью до 80 000 кВ • А.

Рис. 2.9. Принципиальная схема охладителя системы Д: 1 — бак трансформатора; 2 — радиаторы охладителя; 3 — вентилятор обдува.

 

Масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители (ДЦ) применяется для трансформаторов мощностью 63000 кВ • А и выше.

Охладители состоят из тонких ребристых трубок, обдуваемых снаружи вентилятором. Электронасосы, встроенные в маслопроводы, создают непрерывную принудительную циркуляцию масла через охладители (рис. 2.10).

Благодаря высокой скорости циркуляции масла, большой поверхности охлаждения и интенсивному дутью охладители обладают большой теплоотдачей и компактностью. Такая система охлаждения позволяет значительно уменьшить габаритные размеры трансформаторов. Охладители могут устанавливаться вместе с трансформатором на одном фундаменте или на отдельных фундаментах рядом с баком трансформатора.

Рис. 2.10. Принципиальная схема охладителя системы ДЦ:

1 — бак трансформатора; 2 — масляный электронасос; 3 — адсорбционный фильтр; 4 — охладитель; 5 — вентилятор обдува.

Масляно-водяное охлаждение с принудительной циркуляцией масла (Ц) принципиально устроено так же, как охлаждение ДЦ, но в отличие от последнего охладители в этой системе состоят из трубок, по которым циркулирует вода, а между трубками движется масло.

Температура масла на входе в маслоохладитель не должна превышать 70 "С.

Чтобы предотвратить попадание воды в масляную систему трансформатора, давление масла в маслоохладителях в этом случае должно превышать давление циркулирующей в них воды не менее чем на 0,02 МПа (2 Н/см2). Эта система охлаждения эффективна, но имеет довольно сложное конструктивное исполнение и поэтому применяется для мощных трансформаторов (160 MB • А и более).

Условное обозначение трансформаторов различного типа (автотрансформаторов)

На рис. 2.11... 2.17 представлены общие виды некоторых трансформаторов разной мощности.

Обозначение трансформатора состоит из букв и цифр. Буквами обозначаются: число фаз (О — однофазный, Т — трехфазный); вид охлаждения (табл. 2.1) и число обмоток, работающих на самостоятельные сети, если оно больше двух (трехобмоточный трансформатор обозначают буквой Т). Выполнение одной из обмоток с устройством РПН обозначают дополнительно буквой Н. При обозначении автотрансформатора добавляют букву А перед буквами обо-значения трансформатора. Исполнение трансформатора с естественным масляным охлаждением и защитой при помощи азотной подушки, без расширителя, обозначают дополнительной буквой 3 после обозначения вида охлаждения (например, ТМЗ), трансформатор с расщепленной обмоткой НН — дополнительной буквой Р после обозначения числа фаз (например, ТРДН); трансформаторы для собственных нужд электростанций — дополнительной буквой С (например, ТРДНС).

Таблица 2.1

 Условные обозначения видов охлаждения трансформаторов

Вид охлаждения Условное обозначение
Сухие трансформаторы Естественное воздушное: при открытом исполнении при защищенном исполнении при герметичном исполнении С сз сг
Масляные трансформаторы Естественное масляное С дутьем и естественной циркуляцией масла С естественной циркуляцией воздуха и принудительной циркуляцией масла С принудительной циркуляцией масла С принудительной циркуляцией воды и естественной циркуляцией масла С принудительной циркуляцией воды и масла м Д мц ДЦ MB ц
Трансформаторы с негорючим жидким диэлекг Естественное негорючим жидким диэлектриком Негорючим   жидким диэлектриком с дутьем приком Н нд

 

 

Рис. 2.11. Сухой силовой трансформатор

 

Рис. 2.12. Общий вид трансформаторов ТМ-5600/10 и ТМ-5600/35

 

Рис. 2.13. Общий вид трансформатора с регулированием напряжения под нагрузкой ТДН-10000/35 (а) и эскиз крышек трансформаторов ТДН-1500/35, ТДН-2000/35 (6); общий вид трансформаторов от ТДНГ-10000/110 до ТДНГ-20000/110 (в) и эскиз крышки трансформатора ТДНГ-31500/110 (г):

1 — термосифонный фильтр; 2 — вентилятор обдува; 3 — приводной механизм РПН; 4 — коробка контактов

Рис. 2.14. Общий вид трансформаторов ТМ-3200/10 и ТМ-3200/35

Цифрами в обозначении трансформатора указывают номинальную мощность в киловольт-амперах и через косую черту класс напряжения обмотки ВН в киловольтах. Кроме того, в обозначении указывают: год выпуска рабочих чертежей трансформаторов Данной конструкцию (две последние цифры); климатическое исполнение и категорию размещения (ГОСТ 15150—69).

Рис. 2.15. Общий вид трансформаторов: с — от ТМ-20 до ТМ-50; б — от ТСМ-20 до ТСМ-100

 

Рис. 2.16. Общий вид трансформаторов от ТМ-180 до ТМ-320/6-10 и от ТСМ-180 до ТСМ-500 (а) и эскизы крышек трансформаторов ТМ-180/35 и ТМ-320/35 (б); ТМ-560/10 и ТМ-560/35 (в) и от ТМ-750 до

ТМ-1800 (г)

 

Примеры условного обозначения трансформаторов различного типа:

1. ТМ-100/10-78У1 — трехфазный двухобмоточный трансформатор с естественным масляным охлаждением, номинальной мощностью 100 кВ-А, класс напряжения 10 кВ, конструкция 1978 г.,
для умеренного климата, категория размещения 1;

2. ТРДНС-32000/35-80У1 — трехфазный двухобмоточный транс
форматор, с расщепленной обмоткой НН, охладителем систем Д,
с устройством регулирования под нагрузкой (РПН), предназначенной для собственных нужд электростанций, номинальной мощностью 32 MB-А, класс напряжения 35 кВ, конструкция 1980 г., Для умеренного климата, категория размещения 1;

3. ТСЗ-100/10-79УЗ — трехфазный сухой трансформатор защищенного исполнения номинальной мощностью 100 кВ-А, класс напряжения 10 кВ, конструкция 1979 г., для умеренного климата, категория размещения 3.

 

Рис. 2.17. Общий вид трансформаторов с регулированием напряжения

под нагрузкой ТМН-560/35, ТМН-1000/35, ТМН-1800/35 (а) и эскизы

крышек трансформаторов ТМН-3200/35 (б) и ТМН-5600/35 (в):

7— газовое реле; 2 — термосигнализатор; 3 — заземление; 4 — переключающее

устройство; 5 — съемная рукоятка переключающего устройства


Поделиться:



Последнее изменение этой страницы: 2019-04-19; Просмотров: 1039; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.057 с.)
Главная | Случайная страница | Обратная связь