Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Коэффициент запаса и коэффициент незнания



 

Как бы то ни было, но примерно с 1850 г. даже британские и американскиеинженеры вынуждены были начать рассчитывать на прочность ответственныеконструкции, например крупные мосты. Пользуясь разработанными к тому времениметодами, они вычисляли наибольшие возможные напряжения в конструкции иследили за тем, чтобы они не превышали некоторой узаконенной официальныминормами прочности материала на разрыв.

Для полной безопасности они делали наибольшее вычисленное действующеенапряжение много меньшим - в три-четыре или даже в семь-восемь раз, - чемпрочность материала, найденная путем разрушения простых, однородных егообразцов, очень аккуратно нагружаемых в лабораторной установке. Эту процедуруони называли введением коэффициента запаса[20]. Любая попытка уменьшения веса и стоимости засчет снижения коэффициента запаса грозила обернуться бедой.

Причиной несчастных случаев чаще всего склонны были признавать дефектыматериала; возможно, иногда так оно и было. Прочность металлов действительноменяется от образца к образцу, и всегда присутствует некоторый риск, чтодля изготовления конструкции использован плохой материал. Но прочностьжелеза и стали обычно изменяется лишь в пределах нескольких процентов ичрезвычайно редко возможны колебания в три-четыре раза, не говоря уже осеми или восьми. На практике столь большие расхождения между рассчитаннойи действительной прочностью всегда бывают вызваны иными причинами. Действительноенапряжение в каком-то не известном заранее месте конструкции может намногопревышать вычисленное. Поэтому о коэффициенте запаса иногда говорят како коэффициенте незнания.

В таких конструкциях, как котлы, балки, корабли, где действуют растягивающиенапряжения, в XIX в. материалом обычно служили пуддлинговое железо илимягкая сталь, которые не без оснований имели репутацию "безопасных" материалов.Если в расчет на прочность вносился большой коэффициент незнания, то соответствующиеконструкции часто оказывались вполне удовлетворительными, хотя и при этомаварии случались не так уж и редко.

Все более частыми становились катастрофы на море. Требования к повышениюскорости и снижению веса судов породили трудности и для адмиралтейства,и для кораблестроителей: у кораблей возникла тенденция разламываться воткрытом море надвое, хотя наибольшие расчетные напряжения казались вполнеумеренными и безопасными. Так, в 1901 г. внезапно разломился пополам изатонул в Северном море при нормальной погоде совершенно новый эсминецбританского военно-морского флота "Кобра", в то время один из самых быстроходныхкораблей мира. Погибло 36 человек. Ни последовавшие за этим заседания военноготрибунала, ни адмиралтейская комиссия по расследованию не пролили светана технические причины несчастного случая. Поэтому в 1903 г. адмиралтействовыполнило и опубликовало результаты нескольких экспериментов, проведенныхв условиях штормовой погоды, с таким же кораблем, эсминцем "Волк". Онипоказали, что напряжения в корпусе корабля в реальных условиях несколькоменьше тех, которые были вычислены при проектировании судна. Но посколькуи те и другие напряжения оказались намного меньше известной прочности стали,из которой был сооружен корабль (значение коэффициента запаса составляло5-6), эти эксперименты мало что дали.

 

Концентрация напряжений, или как "запустить" трещину

 

К пониманию проблем такого рода впервые удалось подойти не с помощьюдорогостоящих экспериментов на натуральных конструкциях, а с помощью теоретическогоанализа. В 1913 г. К.Е. Инглис, ставший позднее профессором в Кембридже,который был полной противоположностью бесплодным представителям чистойнауки, опубликовал в "Трудах института корабельных инженеров" статью, значениекоторой выходило далеко за рамки вопроса о прочности кораблей.

Инглис перенес на механиков приписываемое лорду Солсбери высказываниео политиках: нельзя пользоваться только мелкомасштабными картами.  Почти столетие механики довольствовались картиной напряжений, получаемойв широкой, наполеоновской манере, не обращая внимания на подробности. Инглиспоказал, что такой подход дает надежные результаты только в тех случаях,когда материалы и элементы конструкции имеют гладкие поверхности без резкихизменений формы.

Отверстия, трещины, острые углы и другие особенности поверхности, накоторые раньше не обращали внимания, повышают локальные напряжения; такиеобласти повышенных напряжений могут быть очень малыми, но последствия -весьма драматическими. В окрестности отверстия или надреза напряжения могутзначительно превышать разрушающие напряжения для данного материала дажев тех случаях, когда общий средний уровень напряжении невысок и, согласно"мелкомасштабным" вычислениям, конструкция кажется вполне безопасной.

Пусть в несколько ином аспекте, но этот факт был известен кондитерам,иначе зачем было делать желобки в плитках шоколада, и тем, кто имел делос почтовыми марками и бумагой: ведь не случайно и не для красоты пробивалисьна них ряды дырочек. Да и портной, прежде чем оторвать кусок ткани, непременноделал надрез на кромке. А вот серьезные инженеры до того времени почтине проявляли интереса к вопросам образования трещин и не считали, что ониимеют отношение к инженерному делу.

Легко объяснить, почему почти любое отверстие, трещина или надрез воднородной среде будет вызывать локальное увеличение напряжений. На рис.11, а изображен гладкий однородный брусок, который подвергаетсяравномерному растяжению с напряжением s  . Линии, пересекающиеобразец, представляют собой так называемые траектории напряжений, можносказать, что вдоль этих линий напряжение передается от молекулы к молекуле.В данном случае это прямые параллельные линии, равноотстоящие одна от другой.

 

 

Рис. 11. Картинанапряженийв равномерно растянутом бруске,не содержащем трещины (а )и содержащем ее (б ).

Если же мы разорвем некоторую группу этих линий, сделав в материаленадрез, трещину или отверстие, то силы, представляемые этими траекториями,потребуется как-то уравновесить. То, что происходит в действительности,не так уж неожиданно: силы вынуждены "обойти" разрыв, вследствие этогоплотность траекторий напряжения увеличивается до степени, зависящей главнымобразом от формы выемки (рис. 11, б ). В случае длинной трещины,например, их скопление вокруг ее конца может быть очень велико. Таким образом,как раз в окрестности кончика трещины сила, действующая на единицу площади,увеличивается и, следовательно, локальные напряжения оказываются большими(рис. 12).

 

 

Рис. 12. Концентрация напряжений у кончика трещины. Распределение касательныхнапряжения в прозрачном материала визуализируется в поляризованном свете,полосы на фотографии представляют собой линии равных касательныхнапряжений.

Инглису удалось вычислить, насколько при растяжении увеличится напряжение наконце эллиптического отверстия в твердом материале, подчиняющемся законуГука[21]. Хотя эти вычисления справедливы, строгоговоря, только для эллиптических отверстий, результаты с достаточной точностьюприменимы и к отверстиям другой формы: к амбразурам, дверям и люкам на судах,самолетах и других аналогичных сооружениях, а также к трещинам, царапинам иотверстиям в других конструкциях и материалах всех сортов, даже к пломбам взубах.

Результат Инглиса можно представить в виде простойформулы[22]. Пусть имеется участок материала, в котором на достаточно большомрасстоянии от трещины приложено напряжение s  . Если трещина, надрез иликакая-либо другая выемка имеет длину L   и если радиус конца этой трещиныили выемки равен r  , то напряжение непосредственно около этого конца неостанется равным s  , а возрастет до величины s(1 + 2(L/r)1/2).

В случае полукруглой выемки или круглого отверстия, когда r = L  ,наибольшее напряжение, таким образом, будет равно 3s  , но в случаеотверстий под двери и люки, часто имеющих острые углы, r   будет мало, aL   - велико, и, следовательно, напряжение в этих углах может быть оченьбольшим - столь большим, что именно оно ломает пополам корабль.

В экспериментах с "Волком" датчики для измерения деформаций (упругиедеформации легко пересчитываются в напряжения) крепились к обшивке корабляв самых разных местах, но, как оказалось, ни один из них не был помещенвблизи углов люков или других отверстий. Если бы это сделали, то почтинаверняка внушающие опасения результаты были бы получены еще до выходакорабля из Портлендского канала.

В случае трещин обнаруживается еще более опасная ситуация, так как утрещины длиной в несколько сантиметров и даже метров радиус ее кончикаможет иметь молекулярные размеры - менее одной миллионной сантиметра, апотому величина L/r   оказывается очень большой. Таким образом,напряжение у кончика трещины вполне может быть в сотню или даже в тысячураз больше, чем напряжение в других местах материала.

Результаты Инглиса, принятые буквально и целиком, означали, что создатьконструкцию, безопасную при растяжении, вообще вряд ли возможно. В действительностиже материалы, используемые в работающих на растяжение конструкциях, такие,как металлы, дерево, канаты, стеклопластики, текстильные ткани и большинствобиологических материалов, являются вязкими, трещиностойкими, что означает,как мы увидим в следующей главе, что они обладают более или менее хитроумнымисредствами защиты против концентрации напряжений. Однако даже в случаелучших, наиболее трещиностойких из материалов эта защита только относительнаи любая конструкция в чем-то уязвима.

Но используемые в технике хрупкие твердые тела (стекло, камень и бетон)не имеют и такой защиты. Иными словами, они весьма точно соответствуютисходным допущениям, которые были заложены в расчетах Инглиса. Более того,чтобы ослабить материал, даже не нужно искусственно создавать надрезы -концентраторы напряжении. Природа щедро позаботилась об этом: реальныетвердые тела еще до создания из них конструкций, как правило, содержатмножество всевозможных пор, щелей и трещин. По этой причине было бы опрометчивымподвергать хрупкие твердые тела заметным растягивающим напряжениям. Их,конечно, широко используют при возведении стен, строительстве дорог и т.п., где они, как принято считать, работают на сжатие. В тех случаях, когданельзя избежать некоторого растяжения, как, например, в оконных стеклах,необходимо позаботиться о том, чтобы эти напряжения были достаточно малыми,и вводить большой коэффициент запаса прочности.

Следует отметить, что не только отверстия, трещины и другие пустоты могут бытьпричиной понижения прочности материала. Вызвать концентрацию напряжений может,наоборот, и добавка материала, если это приводит к резкому локальномуувеличению жесткости. Так, если поставить заплату из нового материала на старуюодежду или толстый лист брони на тонкий борт военного корабля, из этого неполучится ничего хорошего[23].

Причина здесь в следующем. Траектории напряжений могут столь же сильнопритягиваться к более жесткой области (заплате), как и отталкиваться отобласти с более низкой жесткостью (отверстия). Любой элемент конструкции,отличающийся от окружающих его элементов своими упругими свойствами, вызываетконцентрацию напряжении и может быть опасным.

Стремясь повысить прочность с помощью добавочных материалов, стоит задуматься,а не уменьшится ли она на самом деле. Опыт научил меня, что инспекторыстраховых компаний и правительственных учреждений, настаивающие на том,чтобы сосуды высокого давления и другие конструкции были "подкреплены"дополнительными косынками и переборками, зачастую бывают ответственны зате самые несчастные случаи, которые они старались предотвратить.

Представителям живой природы в общем неплохо удается избежать такогорода перенапряжений. Однако концентрация напряжений может быть существенныммоментом ортопедической хирургии, особенно при соединении относительномягких костей жесткими металлическими протезами.

 

 

Глава 4

 


Поделиться:



Последнее изменение этой страницы: 2019-05-07; Просмотров: 308; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь