Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Load Bias Point — загрузка данных режима по постоянному току.



Считывание из файла узловых потенциалов производится по директиве

.LOADBIAS <"имя файла">

Из файла, созданного в предыдущем сеансе работы с программой PSpice, считываются узловые потенциалы по постоянному току. Для выполнения расчета переходных процессов по директиве .TRAN с заданными начальными условиями этот файл можно предварительно отредактировать и заменить директиву .NODESET на .IC. Для передачи содержания файла узловых потенциалов, указанного в директиве .LOADBIAS, в выходной файл результатов (с расширением имени *.OUT), необходимо в ди

Описание аналоговых компонентов

Параметры компонентов указываются двумя способами: 1) непосредственно в предложении, описывающем включение компонента в схему; 2) с помощью директивы .MODEL, имеющей структуру:

.MODEL <имя модели> [АКО:<имя модели прототипа>]

+ <имя типа модели>

+ ([<имя параметра>= <значение>

+ [<спецификация случайного разброса значения параметра>]]*

+ [Т_МЕАSURED=<значеншг>] [[Т_АВ8>=<значение>] или

+ [Т_REL_СLОВАL=<значение>] или [Т_REL_LOCAL=<значекие>]])

Здесь <имя модели> — имя модели компонента схемы, например RLOAD, KT315V, D104. После ключевого слова АКО (A Kind Of) помещается ссылка на имя модели прототипа, что позволяет указывать только значения различающихся параметров. Тип компонента определяется <именем типа модели>, как указано в табл. 4.13.

Таблица 4.13. Имена типов аналоговых и цифровых компонентов

Имя типа модели Тип компонента
Аналоговые компоненты  
САР Конденсатор
CORE Магнитный сердечник трансформатора
D Диод
GASFET Арсенид-галлиевый полевой транзистор с каналом п-типа
IND Индуктивность
ISWITCH Ключ
LPNP Боковой биполярный р-л-р-транзистор
NIGBT Статически индуцированный биполярный транзистор
NJF Полевой транзистор с каналом л-типа
NMOS МОП-транзистор с каналом л-типа
NPN Биполярный л-р-я-транзистор
PJF Полевой транзистор с каналом р-типа
PMOS МОП-транзистор с каналом р-типа
PNP Биполярный р-л-р-транзистор
RES Резистор
TRN Линия передачи
VSWITCH Ключ
Устройства интерфейса  
DINPUT Аналого-цифровой интерфейс
DOUTPUT Цифро-аналоговый интерфейс
Цифровые устройства  
UADC Аналого-цифровой преобразователь
UBTG Двунаправленный переключающий вентиль
UDAC Цифроаналоговый преобразователь
UDLY Цифровая линия задержки
UEFF Триггер с динамическим управлением
UGATE Стандартный вентиль
UGFF Триггер с потенциальным управлением
UIO Модель входа /выхода цифрового устройства
UPLD Программируемые логические матрицы
UROM Постоянное запоминающее устройство
URAM Оперативное запоминающее устройство
UTGATE Вентиль с тремя состояниями

В директиве .MODEL в круглых скобках указывается список значений параметров модели компонента (если этот список отсутствует или не полный, то недостающие значения параметров модели назначаются по умолчанию). Приведем примеры этой директивы:

.MODEL RLOAD RES (R=1.5 TC1=0.2 TC2=.005)

.MODEL D104D(IS=1E-10)

.MODEL KT315V NPN (IS=1E-11 BF=50 DEV=5% LOT=20%)

.MODEL CK CAP (C=1 DEV=0.1)

.MODEL KT315G AKO:KT315A NPN (BF=130)

Каждый параметр может принимать случайные значения относительно своего номинального значения в соответствии со < спецификацией случайногоразброса значения параметра>, принимаемой во внимание только при статистическом анализе по директивам .МС и .WCASE (п. 4.1.2). Имеются два способа задания температур пассивных компонентов и полупроводниковых приборов (С, L, R, В, D, J, M, Q и Z). Во-первых, по директиве .MODEL задается температура, при которой измерены входящие в нее параметры:

Т_МЕАSUARED=<значение>

Это значение заменяет температуру Tnom, устанавливаемую по директиве .OPTIONS (по умолчанию 27 °С). Во-вторых, можно установить физическую температуру каждого устройства, заменяя глобальную температуру, устанавливаемую по директивам .TEMP, .STEP TEMP или .DC TEMP. Это возможно сделать, задавая:

1) значение абсолютной температуры устройства T_ABS;

2) относительную температуру T_REL_GLOBAL, так что абсолютная температура равна глобальной температуре плюс значение параметра T_REL_GLOBAL;

3) относительную температуру T_REL_LOCAL, так что абсолютная температура данного устройства равна абсолютной температуре устройства-прототипа (модель АКО) плюс значение параметра T_REL_LOCAL.

Описания аналого-цифровых (О) и цифроаналоговых (N) интерфейсов и цифровых устройств (U) приведены в разд. 4.3. Здесь же дадим правила описания аналоговых компонентов.

Пассивные компоненты

Резисторы описываются предложением

Rxxx <+узел> <-узел> [имя модели] <значение> [ТС=<ТС1>[,<TС2>]]

Здесь ххх — произвольная алфавитно-цифровая последовательность общей длиной не более 7 символов, которая пишется слитно с символом R и вместе с ним образует имя компонента. Например:

R1 1502К

RGEN 1 2 2.4Е4 ТС=0.005

R12 3 О RTEMP 5K

.MODEL RTEMP RES (R=3 DEV=5%TC1=0.01)

Параметры, описывающие модель резистора, приведены в табл. 4.14.

Таблица 4.14. Параметры модели резистора

Обозначение Параметр Размерность Значение по умолчанию
R Масштабный множитель сопротивления 1
ТС1 Линейн. температ. коэффициент сопротивления °с-1 0
ТС2 Квадратичный темпер.коэффициент сопротивления о С -2 0
ТСЕ Экспоненциальный темпер. коэф. сопротивления °с 0
T_MEASURED Температура измерения °с
T_ABS Абсолютная температура °с
T_REL_GLOBAL Относительная температура °с
T_REL_LOCAL Разность между темпер.устройст. и модели-прототипа °с

Если в описании резистора <имя модели> опущено, то его сопротивление равно параметру <сопротивление> в омах. Если <имя модели> указано и в директиве .MODEL отсутствует параметр ТСЕ, то сопротивление резистора определяется выражением

<значение>-& [ 1+ТС1 (T-Tnom)+TC2(T-Tnom) 2 ];

Если параметр ТСЕ указан, то сопротивление равно <значение>R*1,01 ТСЕ(т " Тпоm)

Здесь Т — текущее значение температуры (указывается по директиве .TEMP); Tnom= 27 °С — номинальная температура (указывается по директиве .OPTIONS).

Параметр <значение> может быть как положительным, так и отрицательным, но не равным нулю.

Спектральная плотность теплового тока резистора рассчитывается по формуле Найквиста S i (f)=4kT/<сопротивление>. Для резисторов с отрицательным сопротивлением в этой формуле берется абсолютное значение сопротивления.

Направление падения напряжения на резисторе (как и на произвольном двухполюсном компоненте) и тока через него указаны на рис. 4.8, а.

а)                                                        б)                                                          в)

Рис. 4.8. Типовые двухполюсники: а — резистор; б — источник тока; в — источник напряжения

Конденсатор описывается предложением

Сххх <+узел> <-узел> [имя модели] <значение> + [IС=< начальное значение напряжения>]

Например:

С1 15056pF

C2390.5pFIC=1.5V

C346CMOD10uF

.MODEL CMOD CAP(C=2.5 TC1=0.01 VC1=0.2)

Параметры модели конденсатора приведены в табл.4.15.

Таблица 4.15. Параметры модели конденсатора

Обозначение Параметр Размерность Значение по умолчанию
С Масштабный множитель емкости 1
VC1 Линейный коэффициент напряжения в -1
VC2 Квадратичный коэффициент напряжения в- 2
ТС1 Линейный температурный коэффициент емкости о С -1 0
ТС2 Квадратичный температурный коэффициент емкости о С -2 0
T_MEASURED Температура измерения °с
T_ABS Абсолютная температура °с
T_REL_GLOBAL Относительная температура °С
T_REL_LOCAL Разность между температурой устройства и модели-прототипа °С

Если в описании конденсатора <имя модели> опущено, то его емкость равна параметру <значение> в фарадах, в противном случае она определяется выражением

<значение>-С(1+VVСV+VС2.V 2 )[1+ТС1(Т-Тпоm) + TC2(T-Tnom) 2 ].

Здесь V — напряжение на конденсаторе при расчете переходных процессов (режим TRAN). При расчете частотных характеристик (режим АС) емкость считается постоянной величиной, определяемой в рабочей точке по постоянному току.

После ключевого слова IC указывается значение напряжения на конденсаторе при расчете режима по постоянному току, которое при расчете переходных процессов служит начальным значением этого напряжения.

Индуктивность описывается предложением

Lxxx<+yзел> <-узел> [имя модели] <значение> + [IС=< начальное значение тока>]

Например:

L1 15020mH

L2 1 2 0.2Е-6

L3 4 6 2VH Ю=2

LOAD 5 12 LMOD 0.03

.MODEL LMOD IND (L=2 DEV=20% IL1=0.1)

Параметры модели индуктивности приведены в табл. 4.16.

Таблица 4.16. Параметры модели индуктивности

Обозначение Параметр Размерность Значение по умолчанию
L Масштабный множитель индуктивности 1
IC1 Линейный коэффициент тока А -1
IC2 Квадратичный коэффициент тока А -2
ТС1 Линейный темпер. коэффициент индуктивности C- 1 0
ТС2 Квадрат. темпер. коэффициент индуктивности C- 2 0
T_MEASURED Температура измерений °С
Т_АВС Абсолютная температура °С
T_REL_GLOBAL Относительная температура °С
T_REL_LOCAL Разность между темпер. устройства и модели-прототипа °С

Если в описании опущено <имя модели>, то индуктивность равна параметру <значение> в генри, в противном случае она определяется выражением

<значение>- L( 1+IL1.1+IL2.I 2 )[ I+TC1 (T-Tnom)+TC2(T-Tnom) 2 ].

Здесь I — ток через катушку индуктивности при расчете переходных процессов (режим TRAN). При расчете частотных характеристик (режим АС) индуктивность считается постоянной величиной, определяемой в рабочей точке по постоянному току.

После ключевого слова IC указывается значение тока через катушку индук-тивностей при расчете режима по постоянному току, которое при расчете переходных процессов служит начальным значением этого тока.

Взаимная индуктивность описывается следующим предложением

Кххх Lyyy Lzzz... <коэффициент связи>

Порядок перечисления имен индуктивностей Lyyy, Lzzz, ... безразличен, знак взаимной индуктивности определяется порядком перечисления узлов в описании каждой индуктивности. Параметром взаимной индуктивности является <коэффициент связи>. Если в трансформаторе имеется несколько обмоток, то можно либо определить взаимные индуктивности для каждой попарной комбинации обмоток в отдельных предложениях, либо в одном предложении указать список всех индуктивностей, имеющих одинаковый коэффициент связи. Например, трехобмоточный высокочастотный трансформатор (рис. 4.9) описывается следующим образом:

I1 1 0АС1МА L1 1 010UH L22310UH L33410UH K12L1 L2L30.8

Здесь I1 — источник тока, комплексная амплитуда которого в режиме АС имеет значение 1 мА. Первый узел в описаниях индуктивностей LI, L2, L3 обозначает начало обмотки.

 

Рис. 4.9. Трехобмоточный трансформатор

Коэффициент связи двух обмоток определяется выражением

коэффициент связи = Mij/ (корень LiLj)

где Li Lj — индуктивности обмоток;

M tj — их взаимная индуктивность.

Напряжение на катушке L i с учетом взаимной индукции определяется выражением

Vi = Li *dl i /dt+ Мij*dl i /dt + М ik *dl k /dt+... Магнитный сердечник трансформатора описывается предложением

KxxX Lyyy Lzzz ... <коэффициент связи> <имя модели> + [<масштабный коэффициент>]

На одном сердечнике помещается одна или несколько обмоток с именами Lyyy, Lzzz, ... Все обмотки имеют одинаковый <коэффициент связи>. При описании каждой обмотки Lyyy, упомянутой в составе сердечника, изменяется смысл параметра <значение> — теперь он определяет не индуктивность, а число витков обмотки сердечника. Например, трансформатор с пермаллоевым сердечником МП60 (рис. 4.10) описывается предложениями:

OL1 15 1050; 50 витков

L2 10 0 150; 150 витков

K2L1 L20.99TI125V

.MODEL T1125V CORE (LEVEL=2 MS=334E3 ALPHA=2.5E-2 A=4.05E3 K=166 C=0.05

+ AREA=0.064 PATH=2.25)

 

Рис. 4.10. Трансформатор с магнитным сердечником

Параметр <масштабный коэффициент> изменяет площадь поперечного сечения магнитопровода (по умолчанию равен единице). Она равна произведению этого коэффициента на параметр модели сердечника AREA.

График кривой намагниченности сердечника выводится на экран (в программе Probe, см. разд. 5.1) при наличии директивы .PROBE; с помощью директив .PRINT и .PLOT эти данные не выводятся.

В программе PSpice используется модель магнитного сердечника, предложенная Джилсом и Атертоном [7]. Она основана на известных представлениях о движении доменных границ магнитных материалов. С ее помощью удается отразить все основные характеристики гистерезиса, такие, как кривая начальной намагниченности, намагниченность насыщения, коэрцитивная сила, остаточная намагниченность и динамические потери на гистерезис.

Существуют две разновидности этой модели — LEVEL = 1 и LEVEL = 2, из которых модель LEVEL = 1 оказалась неудачной и ее исключили из PSpice 8.0. Параметры модели LEVEL = 2 приведены в табл. 4.12.

Таблица 4.17. Параметры модели магнитного сердечника

Имя параметра Параметр Размерность Значение по умолчанию
LEVEL Индекс модели 2
А Парам. формы безгистер. кривой намагничив. А/м 10 3
AREA Площадь поперечного сечения маг-нитопровода см 2 0,1
С Постоянная упругого смещения доменных границ 0,2
GAP      

Идеальные ключи

Ключи, управляемые напряжением или током, используются при расчете переходных процессов.

Ключ, управляемый напряжением, описывается предложением

Sxxx <+узел> <-узел> <+ управляющий узел> <- управляющий узел> + <имя модели>

Здесь <+узел> и <-узел> — номера узлов, к которым подсоединен ключ; <+управляющий узел>, <- управляющий узел> — номера узлов, разность потенциалов которых управляет ключом.

Параметры ключа задаются по директиве

.MODEL <имя модели> VSWITCH (VОN=<значение>VОFF==<значение> +RON=<значение> ROFF=<значеные>)

Параметры модели ключа, управляемого напряжением, приведены в табл. 4.19.

Таблица 4.19. Параметры модели ключа, управляемого напряжением

Обозначение Параметр Размерность Значение по умолчанию
VON Напряжение замыкания ключа В 1
VOFF Напряжение размыкания ключа В 0
RON Сопротивление замкнутого ключа Ом 1
ROFF Сопротивление разомкнутого ключа Ом 10 6

Если VON > VOFF, то ключ замкнут при управляющем напряжении Vупр > VON и разомкнут при Vупр < VOFF. На интервале VOFF < Vynp < VON сопротивление ключа плавно изменяется от значения ROFF до RON. Если VON < VOFF, то ключ замкнут при Vynp < VON и разомкнут при Vynp > VOFF.

Спектральная плотность тока теплового шума ключа равна S, = 4kT / Rs Ключ, управляемый током независимого источника напряжения, описывается предложением

Wxxx <+узел> <-узел> <имя управляющей ветви> <имя модели>

Здесь <имя управляющей ветви> - имя источника напряжения (его ЭДС может быть равна нулю), ток через который управляет ключом. Параметры ключа задаются по директиве

.MODEL <имя модели> ISWITCH (ION=<значение> IOFF=<значение>

+ RON=<значение> ROFF=<значеные>)

Смысл этих параметров такой же, как для ключа, управляемого напряжением, только параметр ION по умолчанию равен 1 мА. Приведем пример описания ключа, управляемого током:

VCONT 420

W1 6, 3 VCONT SW

.MODEL SW ISWITCH (ION=50MA IOFF=45MA)

Ключ, управляемый во времени, реализуется путем подключения к ключу, управляемому током или напряжением, источника переменного во времени сигнала.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 206; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.04 с.)
Главная | Случайная страница | Обратная связь