Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Траектории автономных систем.



Содержание

 

Введение. 3

1. Свойства систем  дифференциальных уравнений. 4

1.1. Основные определения. 4

1.2. Траектории автономных систем. 5

1.3. Предельные множества траекторий. 6

1.4. Траектории линейных систем на плоскости. 8

1.5. Линейные однородные системы с периодическими коэффициентами. 10

2. Устойчивость решений систем дифференциальных уравнений. 12

2.1. Устойчивость по Ляпунову. 12

2.2. Устойчивость линейных однородных систем. 14

2.3. Устойчивость периодических решений. 17

2.4. Классификация положений равновесия системы второго порядка. 18

2.5. Автономные системы на плоскости. Предельные циклы. 23

2.6. Устойчивость по первому приближению. 25

2.7. Экспоненциальная устойчивость. 28

3. Второй метод Ляпунова. 29

3.1. Основные определения. 29

3.2. Теоремы второго метода Ляпунова. 30

3.3. Устойчивость по первому приближению. 33

Заключение. 36

Список литературы. 37

 

Введение.

 

Решения большинства дифференциальных уравнений и их систем не выражаются через элементарные функции, и в этих случаях при решении конкретных уравнений применяются приближенные методы интегрирования. Вместе тем часто бывает необходимо знать не конкретные численные решения, а особенности решений: поведение отдельных решений при изменении параметров систем, взаимное поведение решений при различных начальных данных, является ли решение периодическим, как меняется общее поведение системы при изменении параметров. Все эти вопросы изучает качественная теория дифференциальных уравнений.

Одним из основных вопросов этой теории является вопрос об устойчивости решения, или движения системы, если ее трактовать как модель физической системы. Здесь важнейшим является выяснение взаимного поведения отдельных решений, незначительно отличающихся начальными условиями, то есть будут ли малые изменения начальных условий вызывать малые же изменения решений. Этот вопрос был подробно исследован А. М. Ляпуновым.

Основу теории Ляпунова составляет выяснение поведения решений при асимптотическом стремлении расстояния между решениями к нулю. В данной курсовой работе излагаются основы теории Ляпунова устойчивости непрерывных гладких решений систем дифференциальных уравнений первого порядка, а именно: в главе 1 излагаются основные определения, необходимые для изучения устойчивости; в главе 2 дается понятие устойчивости решений систем в общем виде и по первому приближению; в главе 3 излагаются основы второго метода Ляпунова.

1. Свойства систем
дифференциальных уравнений.

1.1. Основные определения.

Пусть  — непрерывные в области G (n+1)-мерного пространства скалярные функции.

Определение. Совокупность уравнений

                                                                                             (1)

называется нормальной системой n дифференциальных уравнений первого порядка. Ее можно записать в матричной форме, если положить

                                                                                                                                

Определение. Решением системы (1) на интервале (a, b) называется совокупность n функций , непрерывно дифференцируемых на этом интервале, если при всех :

1) ;

2)

Задача Коши для системы (1) ставится следующим образом: найти решение  системы, определенное в окрестности точки , которое удовлетворяет начальным условиям  …, , где  — заданная точка из области G. Решение задачи Коши существует и единственно, если все функции в правых частях уравнений системы (1) непрерывно дифференцируемы по всем  в окрестности точки .

Каждому решению системы (1) сопоставляется 2 геометрических объекта: интегральная кривая и траектория.

Определение. Если  — решение системы (1) на промежутке (a, b), то множество точек (x, ), , (n+1)-мерного пространства называется интегральной кривой решения, а множество точек ( ), , n-мерного пространства называется траекторией решения. Заметим, что из существования и единственности решения задачи Коши интегральные кривые не могут пересекаться или иметь общих точек, однако траектории могут пересекаться без нарушения единственности, так как начальная точка определяется n+1 координатой. В частности траектория может совпадать с точкой (положение равновесия).

Система (1) называется автономной, если в правые части уравнений не входит явно независимая переменная. Система (1) называется линейной, если она имеет вид:

,

или в матричной форме                                                                           (1')

где , .

Фундаментальной матрицей линейной однородной системы называется матричная функция F(t), определитель которой отличен от нуля и столбцы которой являются решениями системы: . С помощью фундаментальной матрицы F(t) общее решение системы можно записать в виде . Фундаментальная матрица, обладающая свойством , называется нормированной при . Если  — нормированная при  фундаментальная матрица, то частное решение системы записывается в виде , где  — начальное при  значение решения.

Устойчивость по Ляпунову.

Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует траекторию с точки зрения поведения соседних траекторий, располагающихся в ее окрестности. Предположим, что система при старте из начальной точки  порождает траекторию . Рассмотрим другую траекторию той же системы , стартовая точка которой близка к . Если обе траектории остаются близкими в любой последующий момент времени, то траектория  называется устойчивой по Ляпунову.

Наглядная иллюстрация устойчивости по Лагранжу, Пуассону и Ляпунову приводится на рис. 2. Когда говорят просто об устойчивой траектории, то всегда имеется в виду устойчивость по Ляпунову.

Рис. 2. Качественная иллюстрация устойчивости по Лагранжу (траектория остается в замкнутой области), по Пуассону (траектория многократно возвращается в e-окрестность стартовой точки) и по Ляпунову (две близкие на старте траектории остаются близкими всегда)

Рассмотрим уравнение                                                                                (1)

где  и функция f удовлетворяет в G условию Липшица локально:

 и , где  — константа, не зависящая от выбора точек  и .

Предположим, что уравнение (1) имеет решение , определенное при , и что . Чтобы перейти к исследованию нулевого решения, выполним в (1) замену . В результате получим уравнение

                                                      ,                                                   (2)

где  определена в области, содержащей множество . Это уравнение называется уравнением в отклонениях. Пусть  — решение (2) с начальными данными .

Определение. Решение  уравнения (2) называется устойчивым по Ляпунову, если для , такое, что при .

Решение  называется асимптотически устойчивым, если оно устойчиво по Ляпунову и существует  такое, что  при .

Неустойчивость решения  означает следующее: существуют положительное , последовательность начальных точек  при , и последовательность моментов времени  такие, что .

При исследовании вопроса об устойчивости решений часто прибегают к заменам переменных, позволяющим упростить вид рассматриваемого уравнения. Сделаем в (2) замену , где функция  определена при всех  и непрерывна по z при  равномерно относительно , причем . Пусть уравнение  однозначно разрешимо относительно z: , где  определена на множестве  и непрерывна по y при  равномерно относительно . Пусть уравнение (2) заменой  можно преобразовать в уравнение .

Лемма. При сделанных предположениях нулевое решение уравнения (2) устойчиво по Ляпунову, асимптотически устойчиво или неустойчиво тогда и только тогда, когда соответственно устойчиво по Ляпунову, асимптотически устойчиво или неустойчиво нулевое решение уравнения .

Пусть уравнение (2) автономно, а его нулевое решение асимптотически устойчиво. Множество  называется областью притяжения решения .

Второй метод Ляпунова.

3.1. Основные определения.

Рассмотрим дифференциальное уравнение

                                                                ,                                                            (1)

где . Предположим, что G — область единственности и  при всех , т. е. уравнение (1) имеет тривиальное решение . Рассмотрим вопрос об устойчивости этого решения.

Сущность второго метода Ляпунова заключается в исследовании поведения некоторой функции  как функции t при замене x на произвольное решение уравнения (1). В дальнейшем используем определения устойчивости и асимптотической устойчивости, где .

Под функцией Ляпунова будем понимать любую непрерывную функцию  такую, что  при всех . На множестве функций Ляпунова  задан линейный оператор D, определяемый формулой

                                                      .                                                 (2)

 называется производной V в силу уравнения (1). Справедлива формула

                                              ,                                           (3)

где  — решение уравнения (1) с начальными данными .

Определение. Функция Ляпунова , не зависящая от t, называется определенно-положительной, если в области G при . Функция Ляпунова  называется определенно-положительной, если существует определенно-положительная функция  такая, что . Функция Ляпунова  называется определенно-отрицательной, если  — определенно-положительная функция.

Определение. Функция Ляпунова  называется положительной, если  в области G и отрицательной, если  в G.

Таким образом, функцию Ляпунова, тождественно равную в G нулю, можно рассматривать и как положительную, и как отрицательную.

Отметим следующее свойство определенно-положительных и определенно-отрицательных функций: если , то .                                                         (4)

Импликация  в (4) вытекает непосредственно из определения функций Ляпунова. Чтобы обосновать импликацию , рассмотрим произвольную последовательность , , для которой  при . Покажем, что  при . Предположим, что это неверно. Тогда найдется подпоследовательность  и положительное число  такие, что . Согласно определению , где  — определенно-положительная функция. Положим . Множество  компактно, поэтому по теореме анализа , где , следовательно, . Тогда , что противоречит свойству последовательности .

Заключение.

 

Список литературы.

1. Метод функций Ляпунова в анализе динамики систем. Сб. статей. Новосибирск: Наука, 1987.

2. М. Розо. Нелинейные колебания и теория устойчивости. М.: Наука, 1971.

3. Б. П. Демидович. Лекции по математический теории устойчивости. М.: Наука, 1967.

4. И. Г. Петровский. Лекции по обыкновенным дифференциальным уравнениям. М.: Наука, 1964.

5. Ю. Н. Бибиков. Курс обыкновенных дифференциальных уравнений. М.: Высшая школа, 1991.

6. В. И. Арнольд. Обыкновенные дифференциальные уравнения. М.: Наука, 1975.

7. Кузнецов С. П. Динамический хаос (курс лекций). М.: Изд. ФМЛ, 2001.

Содержание

 

Введение. 3

1. Свойства систем  дифференциальных уравнений. 4

1.1. Основные определения. 4

1.2. Траектории автономных систем. 5

1.3. Предельные множества траекторий. 6

1.4. Траектории линейных систем на плоскости. 8

1.5. Линейные однородные системы с периодическими коэффициентами. 10

2. Устойчивость решений систем дифференциальных уравнений. 12

2.1. Устойчивость по Ляпунову. 12

2.2. Устойчивость линейных однородных систем. 14

2.3. Устойчивость периодических решений. 17

2.4. Классификация положений равновесия системы второго порядка. 18

2.5. Автономные системы на плоскости. Предельные циклы. 23

2.6. Устойчивость по первому приближению. 25

2.7. Экспоненциальная устойчивость. 28

3. Второй метод Ляпунова. 29

3.1. Основные определения. 29

3.2. Теоремы второго метода Ляпунова. 30

3.3. Устойчивость по первому приближению. 33

Заключение. 36

Список литературы. 37

 

Введение.

 

Решения большинства дифференциальных уравнений и их систем не выражаются через элементарные функции, и в этих случаях при решении конкретных уравнений применяются приближенные методы интегрирования. Вместе тем часто бывает необходимо знать не конкретные численные решения, а особенности решений: поведение отдельных решений при изменении параметров систем, взаимное поведение решений при различных начальных данных, является ли решение периодическим, как меняется общее поведение системы при изменении параметров. Все эти вопросы изучает качественная теория дифференциальных уравнений.

Одним из основных вопросов этой теории является вопрос об устойчивости решения, или движения системы, если ее трактовать как модель физической системы. Здесь важнейшим является выяснение взаимного поведения отдельных решений, незначительно отличающихся начальными условиями, то есть будут ли малые изменения начальных условий вызывать малые же изменения решений. Этот вопрос был подробно исследован А. М. Ляпуновым.

Основу теории Ляпунова составляет выяснение поведения решений при асимптотическом стремлении расстояния между решениями к нулю. В данной курсовой работе излагаются основы теории Ляпунова устойчивости непрерывных гладких решений систем дифференциальных уравнений первого порядка, а именно: в главе 1 излагаются основные определения, необходимые для изучения устойчивости; в главе 2 дается понятие устойчивости решений систем в общем виде и по первому приближению; в главе 3 излагаются основы второго метода Ляпунова.

1. Свойства систем
дифференциальных уравнений.

1.1. Основные определения.

Пусть  — непрерывные в области G (n+1)-мерного пространства скалярные функции.

Определение. Совокупность уравнений

                                                                                             (1)

называется нормальной системой n дифференциальных уравнений первого порядка. Ее можно записать в матричной форме, если положить

                                                                                                                                

Определение. Решением системы (1) на интервале (a, b) называется совокупность n функций , непрерывно дифференцируемых на этом интервале, если при всех :

1) ;

2)

Задача Коши для системы (1) ставится следующим образом: найти решение  системы, определенное в окрестности точки , которое удовлетворяет начальным условиям  …, , где  — заданная точка из области G. Решение задачи Коши существует и единственно, если все функции в правых частях уравнений системы (1) непрерывно дифференцируемы по всем  в окрестности точки .

Каждому решению системы (1) сопоставляется 2 геометрических объекта: интегральная кривая и траектория.

Определение. Если  — решение системы (1) на промежутке (a, b), то множество точек (x, ), , (n+1)-мерного пространства называется интегральной кривой решения, а множество точек ( ), , n-мерного пространства называется траекторией решения. Заметим, что из существования и единственности решения задачи Коши интегральные кривые не могут пересекаться или иметь общих точек, однако траектории могут пересекаться без нарушения единственности, так как начальная точка определяется n+1 координатой. В частности траектория может совпадать с точкой (положение равновесия).

Система (1) называется автономной, если в правые части уравнений не входит явно независимая переменная. Система (1) называется линейной, если она имеет вид:

,

или в матричной форме                                                                           (1')

где , .

Фундаментальной матрицей линейной однородной системы называется матричная функция F(t), определитель которой отличен от нуля и столбцы которой являются решениями системы: . С помощью фундаментальной матрицы F(t) общее решение системы можно записать в виде . Фундаментальная матрица, обладающая свойством , называется нормированной при . Если  — нормированная при  фундаментальная матрица, то частное решение системы записывается в виде , где  — начальное при  значение решения.

Траектории автономных систем.

Будем рассматривать автономную систему в векторной форме:               (2)
где функция f(x) определена в .

Автономные системы обладают тем свойством, что если  — решение уравнения (2), то , , также решение уравнения (2). Отсюда в частности следует, что решение  можно записать в виде . В геометрической интерпретации эта запись означает, что если две траектории уравнения (2) имеют общую точку, то они совпадают. При этом можно заметить, что траектория вполне определяется начальной точкой , поэтому можно везде считать .

Пусть  — положение равновесия, т. е. . Для того чтобы точка  была положением равновесия, необходимо и достаточно, чтобы . Предположим теперь, что траектория решения  не является положением равновесия, но имеет кратную точку, т. е. существуют , такие, что . Так как  — не положение равновесия, то . Поэтому можно считать, что  при . Обозначим  и покажем, что  — w-периодическая функция.

Действительно, функция  является решением уравнения (2) при , причем . В силу единственности  и  совпадают при всех . Применяя аналогичное рассуждение к решению , получим, что  определено при  и функции  и  совпадают при этих t. Таким образом, можно продолжить  на все , при этом должно выполняться тождество

,

то есть  — периодическая функция с наименьшим периодом.

Траектория такого решения является замкнутой кривой. Из приведенного вытекает следующий результат: Каждая траектория автономного уравнения (2) принадлежит одному из следующих трех типов:

1) положение равновесия;

2) замкнутая траектория, которой соответствует периодическое решение с положительным наименьшим периодом;

3) траектория без самопересечения, которой соответствует непериодическое решение.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 242; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.058 с.)
Главная | Случайная страница | Обратная связь