Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация теплообменников, применяемых в нефтепереработке



СОДЕРЖАНИЕ

 

Введение

1 Технологический раздел

1.1. Классификация теплообменников, применяемых в нефтепереработке

1.2. Назначение теплообменника – «труба в трубе»

1.3. Теоретические основы процесса теплопередачи

1.4. Описание схемы работы теплообменника. Рабочие параметры

1.5. Обслуживание и чистка теплообменника

1.6. Техника безопасности и охрана окружающей среды

2 Расчётный раздел

2.1. Выбор конечной температуры

2.2. Температура нефти на выходе из теплообменника и его тепловая нагрузка

2.3. Средний температурный напор

2.4. Выбор т/о

2.5. Физические параметры теплоносителей при их средних температурах

2.6. Коэффициенты теплоотдачи

2.7. Коэффициент теплопередачи

2.8. Поверхность теплообмена

Список используемой литературы


ВВЕДЕНИЕ

 

В нефтеперерабатывающей промышленности широко распространены процессы теплообмена (нагревания и охлаждения) жидкостей и газов без изменения их агрегатного состояния, а также испарение жидкостей и конденсация паров. Для этого существуют специальные теплообменные аппараты.


ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

Классификация теплообменников, применяемых в нефтепереработке

 

Эти процессы осуществляют в теплообменниках, конденсаторах, холодильниках. В зависимости от способа передачи тепла различают три группы теплообменных аппаратов:

·поверхностные; в которых тепло передается через поверхность, разделяющую обменивающиеся теплом среды;

·смешения, в которых тепло от одной среды к другой передается при непосредственном соприкосновении;

·регенеративные, в которых среды нагреваются при соприкосновении с ранее нагретыми твердыми телами, заполняющими аппарат и периодически нагревающимися другим теплоносителем.

К поверхностным теплообменникам относятся кожухотрубчатые; элементные, змеевиковые, спиральные, типа «труба в трубе» и др. Наиболее распространены кожухотрубчатые теплообменники, которые применяют при больших расходах маловязких жидкостей или газов. Если жидкости имеют высокую вязкость и их расход невелик; используют теплообменники типа «труба в трубе». Змеевиковые теплообменники обычно применяют при небольших тепловых нагрузках.. В конденсаторах охлаждаются пары нефтяных дистиллятов, отводимых с верха ректификационной колонны. Конденсаторы по конструкции и принципу работы делятся на трубчатые, погружные и смешения. Наиболее пожароопасны трубчатые конденсаторы, так как при внезапном прекращении подачи охлаждающей воды на установку пары бензина могут не сконденсироваться в аппарате. Погружные конденсаторы широко распространены, однако на вновь строящихся установках их не применяют, так как они громоздки и коэффициент теплопередачи их невысок. В конденсаторах смешения пары нефтепродукта конденсируются при непосредственном смешении с охлаждающей водой. Конденсат и вода собираются внизу аппарата и разделяются на два слоя из-за разной плотности.

Холодильники на нефтеперерабатывающих заводах предназначены для охлаждения жидких дистиллятов и остатков после перегонки нефти. По конструкций холодильники мало отличаются от теплообменников и бывают двух видов: трубчатые и погружные. Холодильники трубчатого типа наиболее пожароопасны, так как запас воды в них невелик и трубки часто выходят из строя.

Для охлаждения аппаратов на нефтеперерабатывающих заводах расходуется очень много воды. Чтобы уменьшить ее расход, используют оборотные системы. В настоящее время в нефтепереработке и нефтехимии объем оборотного водоснабжения составляет 85% общего расхода. Оборотные системы довольно сложны — это водозаборы, насосные станции, очистные сооружения, сеть водопроводов и т.п. Создание и эксплуатация таких комплексов требует больших капиталовложений. В результате поисков новых систем охлаждения были созданы аппараты воздушного охлаждения (АВО).

 

Назначение теплообменника – «труба в трубе»

 

Теплообменники типа «труба в трубе» используются в основном для нагрева или охлаждения теплоносителя в тех случаях, когда требуются небольшие поверхности теплообмена (обычно до 50 м2). Они также могут использоваться в процессах, сопровождающихся частичным кипением или конденсацией теплоносителя. Преимущество теплообменника «труба в трубе» заключается в разнообразии компоновок, и, кроме того, они могут быть быстро собраны из стандартных элементов на месте монтажа. При необходимости поверхность теплообмена может быть увеличена за счет установки дополнительных секций. Подходящим выбором конструкции входных и выходных патрубков можно обеспечить эффективную очистку поверхностей теплообмена по обеим сторонам. Можно просто выполнять контроль распределения потоков теплоносителя по каждому каналу теплообменника, что особенно важно при охлаждении вязких жидкостей, когда в случае необходимости один насос может быть установлен для группы теплообменников. Главными недостатками теплообменников «труба в трубе» являются большой объем и стоимость. на единицу поверхности теплообмена.

Область применения

Простейший вид теплообменника «труба в трубе» представляет собой У-образную трубу, помещенную внутри трубы такой же формы. Теплообменники «труба в трубе» с продольными ребрами были разработаны в конце второй мировой войны. Теплообменники «труба в трубе» используются вместо кожухотрубных теплообменников при выполнении хотя бы одного из следующих условий:

низкий коэффициент теплоотдачи со стороны кожуха: Если отношение коэффициентов теплоотдачи внутри труб к коэффициентам в межтрубном пространстве больше 2: 1, то следует использовать развитые поверхности. Типичным примером могут служить теплообменники с газом или вязкими жидкостями в межтрубном пространстве и водой, паром или жидкостью с низкой вязкостью в трубах. Чем больше это отношение, тем более эффективным будет применение развитых поверхностей, поскольку при этом могут быть увеличены число и размер ребер;

«пересечение» или близкие значения температур по горячей и холодной стороне. Конструкция теплообменников «труба в трубе» позволяет в точности воспроизвести режим противотока, И ситуация, при которой возникает «пересечение» температур, легко устранима. Поскольку теплообменники типа «труба в трубе» имеют модульную структуру, они могут быть смонтированы последовательно и параллельно с минимумом коммуникационных трубопроводов и на общем фундаменте;

высокие давления. Для выбранной мощности теплообменники «труба в трубе» имеют меньший диаметр наружной трубы, чем диаметр кожуха в кожухотрубных теплообменниках. Наружные трубы обычно не имеют сварных швов, и их диаметр варьирует от 50 до 200 мм, хотя в особых случаях возможны и большие диаметры. Следовательно, при высоком давлении в наружной трубе требуется меньшая толщина стенок из-за малого диаметра;

малые мощности. Теплообменники «труба в трубе» часто используются для небольших мощностей, при которых нет необходимости применять оребренные трубы (например, при использовании в качестве теплоносителя воды). В этом случае применяются гладкие трубы или пучки гладких труб.

 

РАСЧЁТНЫЙ РАЗДЕЛ

Выбор конечной температуры

 

На основании практических данных примем конечную температуру дистиллята дизельного топлива = 433 К. Во всех последующих расчетах, за исключением специально оговоренных случаев, в обозначениях величин нижний индекс «1» относится к горячему теплоносителю (дистиллят – дизельное топливо), а нижний индекс «2» - к холодному теплоносителю (нефти).

 

2.2 Температура нефти на выходе их теплообменника и его тепловая нагрузка

 

Запишем уравнение теплового баланса аппарата в следующем виде:

G1 ·  - q ) · η = G2 · (q  - q )

где q , q  - энтальпия дистиллята дизельного топлива при начальной ( ) и конечной ( ) температурах, кДж/кг;

 q , q – энтальпия нефти при начальной ( ) и конечной ( ) температурах, кДж/кг;

η - коэффициент использования тепла, равный 0, 93-0, 97.

Из этого уравнения определим энтальпию q нефти и затем ее конечную температуру ;

G1, G2 - расходы дизельного топлива и нефти соответственно.

Для дальнейших расчетов необходимо относительные плотности теплоносителей пересчитать с р на р для нефти и для дистиллята дизельного топлива.

Энтальпии теплоносителей определим по ( Приложению 2):

q = 618 кДж/кг.

q = 342 кДж/кг.

q = 244 кДж/кг.

Подставляя найденные величины в уравнение теплового баланса, найдем q [кДж/кг]

q = G(q - q ) · η = G2 ·( q - 244)

q =  + 244 = 292 кДж/кг.

Принимаем = 413 K при найденной энтальпии.

Определим тепловую нагрузку т/o (кДж/ч) и (кВт):

Q1 = G1 · (q - q ) η

Q1 = 16000 · (618 – 342) · 0, 95 = 4195000 кДж/ч

Q1 = 4195000/3, 6 = 1165000 кВт

 

Средний температурный напор

 

Средний температурный напор ∆ Тср в т/о определяем по формуле Грасгофа, имея ввиду, что в аппарате осуществляется противоток теплоносителей по схеме:

Дистиллят ДТ

(538 К) ®  (433 К)

Нефть

(413 К)  (393 К)

∆ Тmax =125 ∆ Tmin = 40

∆ Tcp = ∆ Тmax - ∆ Tmin

∆ Tcp = K

 


Выбор т/o

 

Для того чтобы выбрать один из т/о аппаратов типа «труба в трубе», следует ориентировочно определить необходимую поверхность т/о.

Примем на основании практических данных коэффициент теплопередачи в т/о к = 290 Вт/(м2 · К). Тогда предполагаемая поверхность т/о определяется по формуле:

F =

F = м2

Выбираем т/o «труба в трубе» ТТР7-2 с поверхностью т/o по наружному диаметру внутренней трубы (без ребер).

Технологическая характеристика т/оТТР7-2:

диаметр внутренних труб 48 х 4 мм.

диаметр наружных труб 89 х 5 мм.

допустимая максимальная температура в трубном пространстве – не более 723 К.

допустимая максимальная температура в межтрубном пространстве – не более 473 К.

Учитывая допускаемые температуры потоков, направим по внутренним трубам дистиллят дизельное топливо, а по межтрубному пространству – нефть.

Коэффициент теплопередачи

 

Поверхность теплообмена

 

В соответствии с заданием, рассчитываем поверхность т/о для двух случаев.

 

2.8.1 При отсутствии оребрения и загрязненных поверхностях:

 м2

Необходимое число сдвоенных секций т/o:

С запасом принимаем:

 = 1

 

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

 

1 Молоканов Ю.К., Скобло А.И., Владимиров А.И., Щелкунов В.А. Процессы и аппараты нефтегазопереработки и нефтехимии

2 Молоканов А.К. Технология первичной переработки нефти и природного газа.

3 Кузнецов А.А. Нефтеперерабатывающая промышленность.

4 Вихман А.Г. Процессы и аппараты

5 Баранов Д.А. и Кутепов А.М. Процессы и аппараты.

СОДЕРЖАНИЕ

 

Введение

1 Технологический раздел

1.1. Классификация теплообменников, применяемых в нефтепереработке

1.2. Назначение теплообменника – «труба в трубе»

1.3. Теоретические основы процесса теплопередачи

1.4. Описание схемы работы теплообменника. Рабочие параметры

1.5. Обслуживание и чистка теплообменника

1.6. Техника безопасности и охрана окружающей среды

2 Расчётный раздел

2.1. Выбор конечной температуры

2.2. Температура нефти на выходе из теплообменника и его тепловая нагрузка

2.3. Средний температурный напор

2.4. Выбор т/о

2.5. Физические параметры теплоносителей при их средних температурах

2.6. Коэффициенты теплоотдачи

2.7. Коэффициент теплопередачи

2.8. Поверхность теплообмена

Список используемой литературы


ВВЕДЕНИЕ

 

В нефтеперерабатывающей промышленности широко распространены процессы теплообмена (нагревания и охлаждения) жидкостей и газов без изменения их агрегатного состояния, а также испарение жидкостей и конденсация паров. Для этого существуют специальные теплообменные аппараты.


ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

Классификация теплообменников, применяемых в нефтепереработке

 

Эти процессы осуществляют в теплообменниках, конденсаторах, холодильниках. В зависимости от способа передачи тепла различают три группы теплообменных аппаратов:

·поверхностные; в которых тепло передается через поверхность, разделяющую обменивающиеся теплом среды;

·смешения, в которых тепло от одной среды к другой передается при непосредственном соприкосновении;

·регенеративные, в которых среды нагреваются при соприкосновении с ранее нагретыми твердыми телами, заполняющими аппарат и периодически нагревающимися другим теплоносителем.

К поверхностным теплообменникам относятся кожухотрубчатые; элементные, змеевиковые, спиральные, типа «труба в трубе» и др. Наиболее распространены кожухотрубчатые теплообменники, которые применяют при больших расходах маловязких жидкостей или газов. Если жидкости имеют высокую вязкость и их расход невелик; используют теплообменники типа «труба в трубе». Змеевиковые теплообменники обычно применяют при небольших тепловых нагрузках.. В конденсаторах охлаждаются пары нефтяных дистиллятов, отводимых с верха ректификационной колонны. Конденсаторы по конструкции и принципу работы делятся на трубчатые, погружные и смешения. Наиболее пожароопасны трубчатые конденсаторы, так как при внезапном прекращении подачи охлаждающей воды на установку пары бензина могут не сконденсироваться в аппарате. Погружные конденсаторы широко распространены, однако на вновь строящихся установках их не применяют, так как они громоздки и коэффициент теплопередачи их невысок. В конденсаторах смешения пары нефтепродукта конденсируются при непосредственном смешении с охлаждающей водой. Конденсат и вода собираются внизу аппарата и разделяются на два слоя из-за разной плотности.

Холодильники на нефтеперерабатывающих заводах предназначены для охлаждения жидких дистиллятов и остатков после перегонки нефти. По конструкций холодильники мало отличаются от теплообменников и бывают двух видов: трубчатые и погружные. Холодильники трубчатого типа наиболее пожароопасны, так как запас воды в них невелик и трубки часто выходят из строя.

Для охлаждения аппаратов на нефтеперерабатывающих заводах расходуется очень много воды. Чтобы уменьшить ее расход, используют оборотные системы. В настоящее время в нефтепереработке и нефтехимии объем оборотного водоснабжения составляет 85% общего расхода. Оборотные системы довольно сложны — это водозаборы, насосные станции, очистные сооружения, сеть водопроводов и т.п. Создание и эксплуатация таких комплексов требует больших капиталовложений. В результате поисков новых систем охлаждения были созданы аппараты воздушного охлаждения (АВО).

 


Поделиться:



Последнее изменение этой страницы: 2019-10-24; Просмотров: 257; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.042 с.)
Главная | Случайная страница | Обратная связь