Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Глава 2. Объект и методы исследования



Общие сведения о предприятии

 

Создание Красноярского металлургического завода министерства авиационной промышленности практически началось в 1966 году. К этому времени в Восточносибирском регионе был создан мощный энергетический потенциал. В 1966 году по приказу министра авиационной промышленности началась активная работа по пересмотру ранее разработанного технического задания в соответствии, с которым предполагалось строить не два завода: алюминиевый (КрАЗ) и металлургический (КраМЗ), а один. Главной проблемой в то время было решение вопросов оснащения предприятия современным оборудованием и перспективными технологиями производства заготовок и деформированных полуфабрикатов. (Нощик А.И., 1997.)

В 1969 году была произведена первая плавка алюминия.

Первый цех основного производства и цех товаров народного потребления был введен в эксплуатацию в 1973 году.

До 2001 года ОАО «КраМЗ» располагал своей собственной котельной, а 1.09.2001 года эта котельная перешла в собственность ООО «КраМЗЭнерго».

Предприятие ООО «КраМЗЭнерго» занимается выработкой и передачей тепловой энергии и горячей воды на нужды населения и промышленного узла. Промышленная площадка котельной ООО « КраМЗЭнерго» расположена в 2, 2 километра к востоку от промышленной площадки ОАО «КраМЗ», в районе промзоны ТЭЦ-3.

Санитарно-защитная зона составляет 500 метров.

Перечень структурных подразделений:

- участок эксплуатации;

- участок химводоочистки;

- участок топливоподачи;

- участок подготовки производства;

- склад угля;

- мазутохранилище;

- гараж (механический участок);

- участок газоочистки и гидрозолоудаления;

- участок электрослужбы;

- управление;

- столовая;

- золоотвал.

Предприятие располагает одним золоотвалом, расположенным в промзоне ТЭЦ-3, 1, 5-2, 2 километра севернее д. Песчанка, в 1, 3 километра северо-восточнее городских очистных сооружений и граничит с севера и частично с северо-востока – автотрассой на ТЭЦ-3, с юго-запада – территорией левобережных очистных сооружений.

 

Природно-климатическая характеристика района исследований

 

Климат района г. Красноярска резко континентальный. Самая низкая средняя температура приходится на январь составляет минус 16, 8- минус 18, 3 оС. Самым жарким месяцем является июль. В июле в среднем в течение 26 дней средняя температура выше 15 оС, из них в течение 10 дней выше 20 оС. Средняя месячная и годовая температура воздуха приведена в таблице 3.

 

Таблица 2.1 - Средняя месячная и годовая температура воздуха, 0 С

I II III IV V VI VII VIII IX X XI XII
18, 3 -15, 9 -7, 9 +1, 7 +9, 1 +16, 4 +19, 4 +16, 2 +9, 6 +1, 6 -9, 1 -16, 6

 

Годовое количество осадков в пределах Красноярска 316 мм. Максимум осадков (до 72 %) выпадает в теплый период. В переходные месяцы (март, апрель, октябрь, ноябрь) выпадают смешанные осадки в виде снега с дождем, мокрого снега, ледяного дождя, все вместе они составляют 9 % годового количества осадков.

Для района г. Красноярска характерна однородность режима ветра в течение всего года. Преобладает юго-западный ветер, повторяемость этих ветров вместе с западным составляет 80 %, с мая по август повторяемость юго-западных ветров составляет 40 %. Зимой повторяемость ветров северных, восточных и юго-восточных направлений небольшая (1 %). Средняя месячная и годовая скорость ветра приведены в таблице 2.2.

 

Таблица 2.2 - Средняя месячная и годовая скорость ветра, м/с

I II III IV V VI VII VIII IX X XI XII
4, 0 3, 5 4, 0 4, 9 4, 6 3, 4 2, 5 2, 7 2, 9 3, 9 4, 8 3, 5

 

Роза ветров города Красноярска представлена на рисунке 2.1.

 

с

 

 


ю

Рисунок 2.1 – Роза ветров города Красноярска

 

Годовой ход температуры почвы аналогичен ходу температуры воздуха. Отрицательные значения температуры на поверхности почвы отмечаются с ноября по март, положительные с апреля по октябрь. Среднегодовая температура почвы равна 2 oC.

Котельная ООО «КраМЗЭнерго» использует водный объект р.Черемушки для сброса в него ливневых стоков с территории котельной. Р.Черемушки впадает в левобережную протоку Студеный Исток р. Енисей (2430 км от устья). По рыбохозяйственному значению р. Черемушки относится к водотоку второй категории. В гидрологическом отношении р. Черемушки мало изучена, так как относится к малым рекам, протяженность ее составляет около 10 км. Под золоотвал предприятие занимает землю площадью 19, 5 гектаров.

Методика исследований

 

Отбор проб воздуха осуществляется в местах постоянного и временного пребывания работающих согласно установленного графика. Пробы отбирались аспирационным методом, основанном на протягивании определенного объема воздуха через жидкую или твердую поглотительную среду. Аспирация анализируемого газа через поглотители осуществляется с помощью переносной установки ПРУ-4. Пробы воздуха отбирались на аналитические аэрозольные фильтры АФА для физико-химического анализа в них следующих веществ: аэрозолей серной кислоты, свинца, хрома. Щелочи, окиси алюминия, паров оксида серы, азота, углерода, азотной и соляной кислот, различных видов пыли. Фотометрическое измерение концентраций свинца основано на взаимодействии иона свинца с сульфарсазеном с образованием комплексного соединения, окрашенного в желто-оранжевый цвет. Предельно-допустимая концентрация (ПДК) аэрозолей свинца в воздухе рабочей зоны составляет 0, 01 мг/м3 (Муравьева и др., 1991).

Методика на пыль (взвешенные частицы). Предназначена для определения массовой концентрации пыли в атмосферном воздухе. Используется для измерения разовых и средне суточных концентраций пыли при удельном расходе воздуха 5дм³ (мин.см² ) в диапазонах: 0, 26 – 50мг/м³ (разовая); 0, 007 – 0, 67мг/м³ (суточная); 0, 04 – 4, 2мг/м³ (суточная при автоматическом циклическом отборе проб по 20 мин 12 раз в сутки) от 0, 17до 16, 7мг/м³.

Выполнение измерений производится следующим образом. Массовую концентрацию(ρ мг/м³ ) взвешенных частиц в воздухе вычисляют по формуле

 

ρ = ,

 

где

m1 - масса фильтра без пыли, мг;

m2- - масса фильтра с пылью, мг;

v0 – объём пропущенного через фильтр воздуха, проведенный к нормальным условиям, м³.

Методика на фенол. Она предназначена для отбора и анализа проб при определении массовой концентрации фенола в атмосферном воздухе населённых пунктов при определении разовых концентраций. По результатам при определении концентрации фенола в диапазоне 0, 005 – 0, 15мг/м³ максимальное значение суммарной погрешности не превышает ±25%.

Метод измерения основан на улавливании фенола из воздуха плёночным хемосорбентом и фотометрическом определении его массы по реакции с ч- амигноантипирином в присутствии окислителя – железосинеродистого калия.

Определению фенола не мешают: формальдегид, спирты, ацетон, стирол, α - метиледирол, ароматические углеводороды, циклогексаны, фенолы, с замещённым п – положением, диоксид серы, сероводород. Анилин не мешает так как несорбируется поглотительной щелочной средой (суточная при ручном циклическом отборе проб по 20 мин. 3 раза в сутки) в зависимости от объёма пробы. В диапазонах (0, 26 – 50; 0, 007 – 0, 69; 0, 04 – 4, 2; 0, 17 – 16, 7мг/м³ ) относительная погрешность не превышает ±25%, предельная абсолютная погрешность определения массы пыли на фильтре – 0, 2мг. Предельная относительная погрешность определения объёма воздуха, прошедшего через фильтр – 6%.

Метод измерения основан на определении массы взвешенных частиц пыли, задержанных фильтром из ткани ФПП при прохождении через него определённого объёма воздуха.

Выполнение измерений производится следующим образом. Перед взвешиванием фильтры не менее часа выдерживают в помещении, где производится взвешивание. Если отбор пробы проводился при относительной влажности воздуха, близкой к 100%, то фильтр доводят до постоянной массы. Для этого его необходимо поместить в стеклянной чашке в эксикатор с плавленым хлористым кальцием на два часа или в сушильный шкаф с температурой 40 – 50°С на 30 -50 мин, а затем выдержать 40 – 50 мин в помещении, где производится взвешивание. Если при взвешивании масса фильтра изменяется, то повторяют операцию просушивания.

Взвешенные фильтры с накопленной на них пылью вкладывают в те же пакеты из кальки и полиэтилена, на которые шариковой ручкой наносят значения конечной массы фильтра с пылью. И данные заносят в журнал

Условия выполнения измерений: при отборе проб должны быть соблюдены следующие условия:

· температура исследуемого воздуха, от -10°С до 40°С;

· относительная влажность не более 80 %;

· атмосферное давление 84, 0 – 106, 7кПа, 630 – 800 мм.рт.ст.

Условия выполнения измерений в лаборатории:

· температура воздуха 20±40°С;

· относительная влажность 84, 0 – 106, 7% 630 – 800 мм.рт.ст.;

· влажность воздуха при 20°С, не более 80%.

Проведение измерений: внешние стенки сорбционной трубки вытирают фильтрованной бумагой, сначала увлажненной дистиллированной водой, затем сухой. Трубки помещают в пробирку слоем сорбента вниз и вносят в неё с помощью пипетки 7 нм раствора тетрабората Na. Путём многократного прокачивания раствора через сорбент с помощью резиновой груши переводят пробу в раствор. Затем в трубку, находящуюся в пробирке приливают последовательно по 0, 4мл раствора 4 – иноантипирина и железосинеродистого калия, тщательно перемешивают содержимое, затягивая раствор с помощью груши на возможно более высокий уровень и вытесняя раствор из трубки в пробирку. Через 30 мин трубку удаляют из пробирки, вытесняя остатки раствора и измеряют оптическую плотность раствора относительно воды.

Выполнение измерений производится следующим образом. Концентрация фенола в воздухе в мг/м³ рассчитывается по формуле:

 

ρ = , где

 

m – масса фенола в растворе пробы найденная по градуировочной характеристики мкг;

V0- объём отобранной пробы воздуха проведенный с нормальным условием (0°С и 101, 3кПа), дм.

 

V0=

 

Vt – объём отобранной пробы воздуха при t и р в месте отбора пробы, дм³

t- температура отобранного воздуха на входе ротометра, в градусах.

ρ – атмосферное давление во время отбора пробы, кПа(1мм.рт.ст. = 0, 133кПа).

Методика на формальдегид предназначена для определения концентрации формальдегида в атмосферном воздухе населенных пунктов в диапазоне 0, 01 – 0, 3 мг/м³ при объёме пробы 20дм³. Используется для измерения разовых концентраций. Суммарная погрешность не превышает ±25%.

Метод измерения основан на улавливании формальдегида из воздуха раствором серной кислоты и его фотометрическом определении по образовавшемуся в результате взаимодействия в кислой среде формальдегида с фенилгидразингидрохларидом и хлорамином Б окрашенному соединению.

Приготовление растворов:

· кислота серная, 20% раствор. К 80см³ дистиллированной воды осторожно прибавляют 11см³ концентрированной серной кислоты.

· смесь этанола с фенилгидразином. К 10 см³ этанола приливают 2 см³ 5% раствора фенилгидразина и перемешивают.

· хлоромин Б, 0, 5% раствор 0, 25г хлорамина Б растворяют в дистиллированной воде. Объём доводят до 50 см³.

Выполнение измерений производится следующим образом. В пробирку переносят 5см³ раствора пробы, добавляют 1, 2 см³ свежеприготовленной смеси этанола фенилгидразином, перемешивают. Через 15 мин добавляют 1см³ 0, 5% раствора хлорамина Б, перемешивают 10 мин, к пробе добавляют 2см³ 20% раствора серной кислоты и опять перемешивают. Через 10 мин измеряют оптическую плотность при 520 мм по отношению к воде в кюветах с расстоянием между рабочими гранями 20мм. Аналогично анализируют 3 нулевых пробы, используют по 5 м³ поглотительного раствора. Плотность нулевой пробы не должна превышать 0, 04.

Выполнение измерений производится по формуле:

 

Ρ = , где

 

m- масса загрязняющего вещества в V

ρ - концентрация загрязняющего вещества в воздухе мг/м³

υ a- объём раствора, взятого на анализ, см³

υ 0- объём пробы воздуха приведённый к нормальным условиям, дм³.

Методика на диоксид азота основана для определения концентрации диоксида азота в атмосферном воздухе в диапазоне 0, 02 – 1, 4 мг/м³ при объёме воздуха 5дм³. Используется для измерения разовых и среднесуточных концентраций. Устанавливается суммарная погрешность при доверительной вероятности 0, 95, не превышает ±18%.

Метод измерения основан на улавливании из воздуха плёночным хемосорбентом и фотометрическом определении образующегося нитрит – иона по азокрасителю получающемуся в результате взаимодействия нитрит – иона с сульфаниловой кислотой и 1 – нафтиломином.

Выполнение измерений производится следующим образом. Сорбционную трубку помещают в пробирку и заливают 6 см³ H2O. Путём нескольких прокачиваний воды через сорбент(при помощи резиновой груши) переводят пробу в раствор, выдувают остатки раствора и вынимают трубку из пробирки. Для анализа 5 см³ раствора приносят в другую пробирку. К этому раствору добавляют 0, 5 см³ составного реактива и встряхивают. Через 20 мин определяют оптическую плотность раствора. Каждый раз одновременно аналогично пробе анализируют нулевую пробу – сорбционную трубку из партии подготовленных к отбору трубок.

Вычисление измерений производится по формуле:

 

Ρ = (как и у формальдегида)

Методика на диоксид серы предназначена для определения концентрации диоксида серы в диапазоне 0, 05 – 1, 00мг/м³ при объёме пробы 10 дм³. Установленное значение суммарной погрешности при доверительной вероятности 0, 95 не превышающей ±12%.

Метод измерения основан на улавливании диоксида серы из воздуха плёночным хемосорбентом на основе тетрахлормеркурата Na и его фотометрическом определении по соединению, образующемуся в результате взаимодействия диоксида серы с формальдегидом и парарозонимининой (или фунсином).

Выполнение измерений производится следующим образом. Помещают трубки в стеклянные пробирки и заливают их 6см³ раствора сульфалиновой кислоты. Путем нескольких прокачиваний раствора через сорбент при помощи резиновой груши переводят пробу в раствор, выдувают его остатки и вынимают трубку из пробирки отбирают для анализа 5см³ раствора. Приливают 0, 4см³ формальдегида и 1см³ раствора парарозонимена. Тщательно перемешивают и через 30 мин измеряют оптическую плотность.

Вычисление измерений производится по формуле:

 

Ρ =  (всё как у формальдегида).

 

Аэрозоль серной кислоты в воздухе рабочей зоны определялся турбидиметрическим методом по ее реакции с хлоридом бария. ПДК аэрозоля серной кислоты не должна превышать 1, 0 мг/м3 (Муравьева и др., 1988). Фотометрическое определение концентраций свинца основано на взаимодействии иона свинца с сульфарсазеном с образованием комплексного соединения, окрашенного в желто-оранжевый цвет. ПДК аэрозолей свинца в воздухе рабочей зоны составляет 0, 01 мг/м3.

Аэрозоль серной кислоты в воздухе рабочей зоны определяется турбидиметрическим методом по ее реакции с хлоридом бария. ПДК аэрозоля серной кислоты не должна превышать 1, 0 мг/м3 (Муравьева и др., 1988). Фотометрическое определение паров диоксида азота в воздухе основано на образовании азокрасителя при взаимодействии двуокиси азота с реактивом Грисса-Илосвая. ПДК паров диоксида азота в воздухе рабочей зоны составляет 2 мг/м3. азот не мешает определению до концентраций, не превышающих диоксида азота в 2-3 раза (Лейте, 1980).

Нефелометрическое определение паров сернистого ангидрида в воздухе проводят по его окислению хлоратом калия (или пероксидом водорода) до серной кислоты с образованием взвеси. ПДК паров двуокиси серы не должна превышать 10, 0 мг/м3 (Быковская и др., 1966).

 


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 191; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.045 с.)
Главная | Случайная страница | Обратная связь