Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Принцип работы и устройство асинхронного электродвигателя



Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и электроприводе радиолокационной вооружений.

Достоинства асинхронных электродвигателей:

Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Недостатки:

1. Небольшой пусковой момент.

2. Значительный пусковой ток.

Обмотка статора представляет собой трёхфазную (в общем случае - многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл. град. Фазы обмотки статора соединяют по стандартным схемам " треугольник" или " звезда" и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения (вращения) магнитного потока обмотки возбуждения, поэтому его изготавливают шихтованным (набранным из пластин) из электротехнической стали для обеспечения минимальных магнитных потерь.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора - из электротехнической стали и шихтованным.

 Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешевизной и надежностью.

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

 

На рисунке 1.4: 1 - вал, 2, 6 - подшипники, 3, 8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

 

Рис.1.5. Статор асинхронного двигателя

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Асинхронный электродвигатель короткозамкнутым ротором Рис.1.5. представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется " беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Рис.1.6. Асинхронный двигатель короткозамкнутым ротором.

Асинхронные электродвигатели с фазным ротором Рис.1.6. являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.

Рис.1.7. Асинхронный трехфазный двигатель с фазным ротором

Однофазный асинхронный двигатель Рис.1.7.– это маломощный двигатель (до 1500 Вт) который применяется в установках, в которых практически отсутствует нагрузка на валу в момент пуска, а также в тех случаях, когда питание двигателя может быть осуществлено только от однофазной сети. Чаще всего такие двигатели, применяют в стиральных машинах, небольших вентиляторах и т.д.

Рис.1.8. Однофазный асинхронный двигатель

Однофазный двигатель схож по строению с трехфазным асинхронным двигателем, различием является количество фазных обмоток, у однофазного не три, а две обмотки – пусковая и рабочая, причем постоянно работает только одна обмотка – рабочая.

Для того чтобы ротор асинхронного двигателя пришел в движение, статорная обмотка должна создать вращающееся магнитное поле. В трехфазном двигателе, такое поле создается благодаря трехфазной обмотке. Но рабочая обмотка однофазного двигателя создает не вращающееся, а пульсирующее магнитное поле. Это поле можно разложить на два – прямое и обратное. Прямое поле вращается с синхронной скоростью n1 в направлении вращения ротора и создает основной электромагнитный момент. Скольжение ротора относительно прямого поля равно:

Обратное поле, вращается против ротора, поэтому частота вращения ротора отрицательная, относительно этого поля

Каждое поле наводит ЭДС, благодаря которым по ротору начинают протекать токи. Частоты этих токов пропорциональны скольжению (fт=f·s), , а из формул выведенных выше, можно сделать вывод, что частота тока наводимого обратным полем, намного больше частоты тока прямого поля. В связи с этим, индуктивное сопротивление, которое увеличивается с ростом частоты, приобретает большое значение и становится намного больше активного сопротивления. Поэтому ток обратного поля, является практически индуктивным и оказывает размагничивающее действие на поток обратного магнитного поля. Как следствие, момент, создаваемый этим полем, невелик, и направлен против вращения ротора.

В момент, когда ротор неподвижен, ось симметрии между этими двумя полями, также неподвижна, а значит, не создается вращающего магнитного поля, и как следствие, двигатель не работает. Чтобы привести его в движение, нужно прокрутить ротор, для того чтобы ось симметрии сместилась. Но выполнять это механически не имеет смысла, поэтому для того, чтобы запустить однофазный двигатель, создали пусковую обмотку. Пусковая обмотка совместно с рабочей, создает вращающееся магнитное поле, необходимое для запуска двигателя. Для этого необходимо чтобы МДС обоих обмоток были равны, а также угол между ними составлял 90°. Кроме того, необходимо чтобы и токи в этих обмотках, были смещены на 90°. В этом случае создается так называемое, круговое магнитное поле, при котором результирующий электромагнитный момент максимален. Если же, эти условия выполнены с отклонениями, то создается эллиптическое магнитное поле, при котором момент ниже, из-за увеличенного тормозного момента обратного поля.

В реальных условиях пуск однофазного двигателя осуществляется с помощью одновременного нажатия на кнопки, подающие питание и подключающие пусковую обмотку к цепи.

Для того, чтобы создать фазовый сдвиг в 90° между токами рабочей и пусковой обмотки, используют фазосмещающие элементы (ФЭ). Это может быть активное сопротивление, катушка или конденсатор. Большое распространение получили однофазные двигатели с активным сопротивлением в качестве фазосмещающего элемента. Увеличение сопротивления пусковой обмотки, достигается с помощью уменьшения сечения провода, а так как эта обмотка работает короткий промежуток времени в момент пуска, то это не причиняет обмотке вреда.

Рис1..9. Схема однофазного асинхронного двигателя с фазосмещающие

элементы (ФЭ).

 

Но, активное сопротивление, также как и индуктивное, не создает требуемого смещения в 90° между токами, зато такое смещение создает конденсатор. Емкость этого конденсатора, подбирают таким образом, чтобы ток пусковой обмотки, опережал по фазе напряжение на некоторый угол, который необходим для того, чтобы смещение между токами стало 90°. Благодаря этому, создается круговое магнитное поле. Но, конденсаторы применяются в качестве фазосмещающего элемента реже, потому что для обеспечения смешения в 90°, нужен конденсатор, большой емкости, и как правило, относительно высокого напряжения. Кроме того, габариты этого конденсатора, велики, что также играет роль вращения магнитных полей.


Поделиться:



Последнее изменение этой страницы: 2019-06-08; Просмотров: 545; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь