Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Общая картина конвективного теплообмена при вынужденном поперечном обтекании трубы



Для того чтобы лучше понять зависимость коэффициента теплоотдачи От гидродинамических условий обтекания теплоносителем наруж­ной поверхности труб, рассмотрим вначале поперечное обтекание одиночной трубы, а затем — пучка труб. При поперечном обтекании трубы на лобовой части ее поверхности образуется ламинарный пограничный слой, толщина которого постепенно увеличивается (рис. 11-13). При обтекании лобовой части трубы сечение потока уменьшается, скорость жидкости увеличивается, а давление у по поверхности падает. В кормовой части трубы давление увеличивается, гик как скорость уменьшается; скорость жидкости в пограничном Слое также снижается, а начиная с некоторого сечения частицы движутся в обратном направлении, образуя вихри, которые перио­дически отрываются с поверхности трубы и уносятся потоком (подробнее см. разд. 6.8). При этом соответственно изменяется значение локального коэффициента теплоотдачи по поверхности (окружности) трубы (рис. 11-13, в, г).

Рис. 11-13. Схема поперечного обтекания трубы теплоносителем:

А — при ламинарном пограничном слое; б — при турбулентном пограничном слое; в — распределение скорости у поверхности трубы; г-изменение локального коэффициента теплоотдачи по Поверх Ности цилиндра (1 — Re = 70 800; 2 — Re = 219000)


Максимальное значение лобовой образующей трубы (угол =0), где толщина пограничного слоя Г мала. Затем коэффициент теплоотдачи снижается за счет увеличения Г. Такой режим наблюдается при Re до 2-105. При дальнейшем увеличении числа Рейнольдса (при Re> 2-105) ла­минарный пограничный слой переходит в турбулентный, и точки отрыва перемещается в кормовую сторону трубы.

Локальный коэффициент теплоотдачи при этом может иметь два минимальных значения (рис. 11-13, г): одно — в точке перехода ламинарного пограничного слоя в турбулентный, другое — в точке отрыва от поверхности трубы турбулентного пограничного слоя, Для определения среднего коэффициента теплоотдачи при попе­речном обтекании трубы предложены следующие уравнения:

При Re=5-

Nu=0, 5Re0, 5Pr0, 38(Pr/Prcт)0, 25; (11.66)

При Re=103 – 2*105

Nu=0, 25Re0, 6Pr°, 43(Pr/Prcт)0, 25. (11.67)

Трубчатые теплообменники обычно выполняют в виде пучка трубок. Расположение трубок в этих теплообменниках может быть самым разнообразным. Наиболее распространены шахматные и коридорные пучки (рис. 11-14). Обтекание трубы в пучке отличается от обтекания одиночной трубы тем, что расположенные рядом трубы оказывают


11-14. Схема обтекания пучков труб: а — коридорных; б — шахматных; 1-5 – ряды труб

взаимное влияние на этот процесс. Протекая между трубами, поток сужается, вследствие чего из­меняется поле скоростей, и место отрыва пограничного слоя перемещается в направлении потока. Трубы, расположенные во втором и последующих рядах, попадают в вихревой след от предыдущих рядов, что не может не отразиться на коэффициентах теплоотдачи. Обтекание пучка труб и теплоотдача в нем зависят не только от расположения труб (коридорное или шахматное), но и от их плотности. Плотность расположения труб в пучке может быть охарактеризована относительными поперечным S1/Dпродольным и , S2/D Шагами.

Для значения Re= (что наиболее характерно для промышленных теплообменников) при числе рядов в пучке больше трех

Nu = CRemPr0, 33(Pr/Prcт)0, 25 S, (11.68)

Где С = 0, 41 и m = 0, 6-для шахматных пучков; С = 0, 2 и Т = 0, 65 — для коридорных.

В уравнении (11.68) за определяющий размер принимают наружный диаметр трубы пучка, скорость жидкости рассчитывают по самому узкому сечению ряда. Поправку , учитывающую плотность расположения труб в пучке, определяют следующим образом:

Для коридорного пучка =(S/d)-0, 25

Для шахматного при S1/S2

при S1/S2

При проектировании теплообменных аппаратов следует выбирать оптимальную компоновку с учетом капитальных и эксплуата­ционных затрат. При больших числах Рейнольдса (при Re > 5 ) обычно оказывается предпочтительнее теплообменник с шахмат­ным расположением труб в пучке.

 

1-27

  Кожухо-трубный теплообменник является основным типом теплообменного аппарата он состоит из пучков труб, размещенных в цилиндрическом корпусе. Компоновку труб внутри ограничивающего кожуха аппарата организуют таким образом, чтобы в соответствии с проектной схемой движения потока осуществлялось многоходовое прохождение жидкости. Трубопроводы можно располагать вдоль и поперек направления движения теплоносителя. При продольном расположении труб коэффициент теплопередачи и перепад давления ниже, чем п случае поперечного обтекания, так как поток теплоносителя протекает как бы в каналах, образованных в межтрубном пространстве. Поперечное расположение труб обеспечивает лучшее перемешивание потока теплоносителя в теплообменнике, однако в нем выше перепад давления.

  Поперечное обтекание трубных пучков. Чаще всего теплообменник состоит из трубных пучков, в которых один теплоноситель подается по трубам, а другой омывает их в поперечном направлении. Наиболее распространенные схемы трубных пучков можно классифицировать как коридорную и шахматнуЮ с различным шагом, как показано на рис. П3.9. При коридорной схеме расположения труб потери давления несколько меньше, а теплообмен несколько хуже, поскольку теплоноситель стремится пройти по центральной части между рядами труб, т. е. через области наибольших скоростей (см. рис. 11.2). С другой стороны, при обтекании поперечным потоком пучков труб, расположенных в шахматном порядке, происходит интенсивное перемешивание потока, но при этом увеличиваются потери давления.

  Трубчатые теплообменные аппараты различных типов кожухотрубчатые, труба в трубе и т. п.) наиболее широко распространены в нефтяной, газовой и нефтехимической промышленности. Простейшая конструкция трубного пучка для указанных аппаратов — это пучок круглых труб. От схемы компоновки пучка зависят характер движения потока и омывание труб. При изменении условий смывания пучка меняется и теплоотдача. Исследователями установлено, что наиболее эффективно внешнее поперечное обтекание пучка труб, расположенных в шахматном порядке.

        В настоящее время существует большое число работ, в которых рассматривается технико-экономическая оптимизация как тепловых схем так и ее отдельных элементов. Так, исследовалось продольное обтекание трубного пучка в зоне действия закона Блазиуса для коэффициента трения, анализировалось поперечное обтекание трубного пучка, когда коэффициент теплоотдачи внутри труб можно принять постоянным. 

Имеются работы, в которых рассматривался вопрос выбора диаметра труб поверхности нагрева. Обычно это либо практические рекомендации, основанные на опыте конструирования и эксплуатации теплообменных аппаратов, либо общие соображения, основанные на характере зависимости и связанные с конкретной схемой движения потоков.

Для химико-технологической практики характерно многообразие аппаратов и схем, работающих в условиях вьшужденной конвекции движение теплоносителей в трубах (в разньк режимах) или снаружи труб (вдоль них или поперек, возможно и под углом к их оси), наружное обтекание пучков труб (шахматных, коридорных) и т.д. Каждому случаю отвечают конкретные зависимости типа — они приводятся в учебниках, монографиях, справочной литературе. В качестве примера приведем одну из формул для расчета а при турбулентном течеиин в трубах

      Многообразие методик показывает необходимость создания единой универсальной методики. Естественно, эта методика должна быть основана на уравнениях теплоотдачи и гидроаэродинамики, которые используются при расчете теплообменников, а вычисления критериев сопоставления поверхностей не должны требовать большого О бъема работ. В этом отношении аналитический метод с использованием отношения критериев является более универсальным, чем графический. Однако аналитический метод реализуется в литературе лишь для простейшего случая— одностороннего наружного обтекания. Двухстороннее обтекание остается до сих пор неизученным. Причина ЭТОГО в том, что аналитическое решение для двухстороннего обтекания относительно сложно, так как нахождение сопряженных чисел Ке (или скоростей) в широком диапазоне чисел Ке при ручном счете весьма трудоемко. В этом случае единственным путем решения задачи является применение ЭВМ. Кроме того, существующие работы по рациональной компоновке гладкотрубных пучков при различных схемах обтекания и сравнение этих схем недостаточно полны, так как не охватывают весь диапазон режимных параметровтеплоносителя, и часто основаны на устаревших формулах по теплоотдаче и аэродинамике поперечное обтекание исследовано лишь при большом числе труб по ходу потока сравнение коридорной и шах)матной компоновок трубного пучка проведено для фиксированных решеток с определенными значениями относителыных шагов. Оптимизация геометрии решетки пр ведена лишь для одностороннего обтекания трубного пуч ка шахматной компоновки, а коридорный пучок не рассматривался.

 

http: //chem21.info/info/152339/

информация взята

 

Аппараты теплообменные кожухотрубчатые

Они достаточно просты в изготовлении, отличаются возможностью развивать большую поверхность теплообмена в одном аппарате, надежны в работе. Кожухотрубчатые теплообменные аппараты с неподвижными трубными решетками и с поперечными перегородками в межтрубном пространстве, применяемые в химической, нефтяной и других отраслях промышленности, обозначаются индексами и классифицируются:

 • по назначению (первая буква индекса): Т – теплообменники; Х – холодильники; К – конденсаторы; И – испарители;

 • по конструкции (вторая буква индекса) – Н — с неподвижными трубными решетками; К — с температурным компенсатором на кожухе; П — с плавающей головкой; У — с U-образными трубами; ПК — с плавающей головкой и компенсатором на ней;

• по расположению (третья буква индекса): Г – горизонтальные; В – вертикальные.

 

Теплообменники с неподвижными трубными решетками.

Теплообменники предназначены для нагрева и охлаждения, а холодильники — для охлаждения (водой или другим нетоксичным, непожаро- и невзрывоопасным хладоагентом) жидких и газообразных сред. Теплообменники и холодильники могут устанавливаться горизонтально или вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников — также и из латуни. Распределительные камеры и крышки холодильников выполняют из углеродистой стали. Схема теплообменника с неподвижными трубными решетками приведена на рис. 6. В кожухе 1 размещен трубный пучок, теплообменные трубы 2 которого развальцованы в трубных решетках 3. Трубная решетка жестко соединена с кожухом. С торцов кожух аппарата закрыт распределительными камерами 4 и 5, Кожух и камеры соединены фланцами.

Для подвода и отвода рабочих сред (теплоносителей) аппарат снабжен штуцерами. Один из теплоносителей в этих аппаратах движется по трубам, другой — в межтрубном пространстве, ограниченном кожухом и наружной поверхностью труб. Особенностью аппаратов типа Н является то, что трубы жестко соединены с трубными решетками, а решетки приварены к кожуху. В связи с этим исключена возможность взаимных перемещений труб и кожуха; поэтому аппараты этого типа называют еще теплообменниками жесткой конструкции. Трубы в кожухотрубчатых теплообменниках стараются разместить так, чтобы зазор между внутренней стенкой кожуха и поверхностью, огибающей пучок труб, был минимальным; в противном случае значительная часть теплоносителя может миновать основную поверхность теплообмена. Для уменьшения количества теплоносителя, проходящего между трубным пучком и кожухом, в этом пространстве устанавливают специальные заполнители, например приваренные к кожуху продольные полосы или глухие трубы, которые не проходят через трубные решетки и могут быть расположены непосредственно у внутренней поверхности кожуха. Если площадь сечения трубного пространства (число и диаметр труб) выбрана, то в результате теплового расчета определяют коэффициент теплопередачи и теплообменную поверхность, по которой рассчитывают длину трубного пучка. Последняя может оказаться больше длины серийно выпускаемых труб. В связи с этим применяют многоходовые (по трубному пространству) аппараты с продольными перегородками в распределительной камере. Промышленностью выпускаются двух-, четырех- и шестиходовые теплообменники жесткой конструкции.

 

 

1-28

Теплообменные аппараты и установки предназначены для передачи теплоты от одной среды к другой или от среды к нагреваемому (охлаждаемому) телу. Теплообменные аппараты и установки по некоторым характерным признакам можно объединить в определенные классификационные группы.

Прежде всего, по способу передачи теплоты от одной среды к другой (от одного теплоносителя к другому) теплообменники классифицируются на:

  • рекуперативные;
  • регенеративные;
  • смесительные;
  • с электрическим обогревом.

В рекуперативных теплообменниках передача теплоты осуществляется сквозь разделяющую теплоносители однослойную или многослойную стенку при установившемся или неустановившемся тепловом режиме. К аппаратам с установившимся тепловым режимом относятся непрерывно действующие теплообменники, работающие при неизменных во времени расходах и параметрах теплоносителей на входе и выходе из аппарата. Передача теплоты от одной среды к другой в рекуперативных аппаратах происходит при одновременном вынужденном движении сред без изменения фазового состояния или при фазовом переходе одного (обоих) теплоносителя.

В периодически действующих аппаратах в течение заданного времени может осуществляться последовательно нагрев, испарение, охлаждение определенного количества предварительно загруженной жидкости или нагрев, охлаждение сыпучих и твердых материалов. В процессе нагрева или охлаждения, естественно, происходит изменение во времени температуры нагреваемого вещества. В качестве греющей среды используются теплоносители, не изменяющие фазовое состояние (жидкости, газы), и конденсирующийся водяной пар или пар другой жидкости. Греющая (охлаждающая) среда, как правило, подается непрерывно с мало изменяющимися параметрами на входе и существенно переменной во времени температурой на выходе из аппарата, особенно у жидких и газообразных теплоносителей. Следовательно, аппараты такого типа относятся к теплообменникам с неустановившимся тепловым режимом.

В особые подгруппы можно выделить оросительные теплообменники и рекуперативные системы с потоками газовзвеси. В первой подгруппе передача теплоты сквозь стенку сопровождается процессами тепломассообмена на внешней орошаемой поверхности. Во второй в качестве одного из теплоносителей используется дисперсная среда со сравнительно небольшой объемной концентрацией твердых частиц, которые изменяют условия переноса тепла от этой системы к поверхности теплообмена и способствуют интенсификации теплообмена.

Непрерывно действующие рекуперативные теплообменники в большинстве случаев можно отнести к категории аппаратов, работающих с установившимся тепловым режимом. По конструктивному оформлению теплообменники непрерывного действия могут быть:

  • змеевиковыми;
  • секционными;
  • кожухотрубчатыми;
  • ребристыми;
  • пластинчатыми;
  • пластинчато-ребристыми;
  • прокатно-сварными;
  • сотовыми.

В регенеративных теплообменных аппаратах при передаче теплоты от одной среды к другой также используется поверхность теплообмена. Однако эта поверхность, или точнее насадка, образующая поверхность теплообмена, является промежуточным аккумулятором теплоты. Вначале, в течение какого-то отрезка времени, насадка через свою поверхность воспринимает определенное количество теплоты от греющей среды. Затем производится переключение потоков теплоносителей и по поверхности насадки пропускается нагреваемая среда. В этот период насадка охлаждается, передавая ранее воспринятую теплоту нагреваемой среде.

Нагрев или охлаждение в регенераторах, особенно с неподвижной насадкой, относится к категории нестационарных, но синхронно повторяющихся тепловых процессов. Обычно в регенераторах нагреваются компоненты горения топлива для промышленных печей, МГД генераторов и парогенераторов.

Для теплообмена при смешении рабочих сред не требуется специальная поверхность.

Теплообмен в этом случае происходит на границе раздела фаз одного рода теплоносителей (однородных) или на границе раздела жидкой и газообразной сред и сопровождается массообменом, изменением энтальпии смеси или каждого из теплоносителей, изменением влагосодержания газообразной среды. Смесительные теплообменники могут быть полыми и с насадкой. Поверхность насадки во втором случае служит только для организации движения пленки жидкой фазы и не является поверхностью теплообмена.

В соответствии с назначением газожидкостные аппараты называются скрубберами, градирнями, оросительными камерами, смесительными подогревателями воды.

  • в полом и насадочном скрубберах происходят охлаждение, осушка или увлажнение и очистка от пыли и других примесей всевозможных газов и воздуха;
  • в оросительных камерах – охлаждение, осушка и увлажнение воздуха для систем кондиционирования;
  • в градирнях – охлаждение охлаждающей воды из конденсаторов паровых турбин;
  • в смесительных паро- и водо-водяных аппаратах – нагревание воды для систем горячего водоснабжения, конденсация отработавшего пара и так далее.

В теплообменных аппаратах с электрическим обогревом в качестве источника тепла используется электрическая энергия. Условия передачи теплоты от источника тепла к нагреваемой среде или нагреваемому телу в них отличаются от условий теплопередачи в теплообменниках с двумя или более теплоносителями.

Электрическая энергия превращается в тепловую в элементах сопротивления, в электродуговых установках прямого или косвенного нагрева, в установках индукционного и диэлектрического нагрева. Наибольшее распространение в промышленной теплотехнике получили электрические нагреватели сопротивления и индукционные нагреватели.

Каждая рассматриваемая группа теплообменников, кроме аппаратов с электрическим обогревом, классифицируется на подгруппы по роду теплоносителей:

  • парожидкостные;
  • жидкостно-жидкостные;
  • газожидкостные;
  • газо-газовые;
  • парогазовые;
  • с дисперсными теплоносителями.

Поверхность теплообмена может быть выполнена из гладких или оребренных разным способом труб, из гладких или профильных волнистых и оребренных пластин или в виде разнообразной по форме фасонной, блочной и кирпичной насадки. По компоновке поверхности теплообмена и соединению ее с корпусом гладкотрубчатые аппараты можно разделить на следующие группы:

  • погруженные с прямыми трубами и змеевиковые;
  • оросительные с водяным и воздушным охлаждением;
  • секционные;
  • кожухотрубчатые.

Секционные и кожухотрубчатые аппараты могут быть скомпонованы также и из ребристых труб.

Кожухотрубчатые и секционные теплообменники изготавливают в виде жесткой (то есть обе трубчатые решетки соединяются жестко с корпусом) и нежесткой конструкции: с U- и W-образными трубами, с «плавающей» камерой и с компенсаторами на корпусе или трубах.

Возможные варианты конструкций труб, применяемых в трубчатых теплообменниках, представлены на (рис. 1.1).

Рис. 1.1 – Трубы для теплообменников: а – с поперечными ребрами: 1 – ретандер; 2– игольчатые; 3 – плоскосплошные; 4 – прямоугольные; 5 – с накатным оребрением; 6 –круглые; 7, 8 – треугольные; 9 – спиральные; 10 – проволочные; б – с продольными ребрами: 11 – прямоугольные; 12 – V-образные; 13 – выдавленные; в – цилиндрические со вставками: 14 – с диафрагмой; 15 – кольцевые; 16 – дисковые; 17 – спиральные; 18 – гладкотрубные цилиндрические; г – пережатые; 19 – полукольцевыми вмятинами; 20 – кольцевыми вмятинами; 21 – спиральными вмятинами; д– нецилиндрические: 22 – овалообразные; 23 – каплеобразные; 24 – двуугольные; 25 – овальные; 26 – обтекаемые; 27, 28 – плавниковые

Аппараты из пластин разделяются на: рубашечные, спиральные, гладкопластинчатые разного профиля, пластинчатые ребристые и сотовые. Они могут быть разборными, полуразборными, сварными и прокатно-сварными.

Поверхность теплообмена пластинчатых аппаратов компонуется из разнообразных по конструктивным признакам стальных листов. К числу таких теплообменников относятся реакторы с рубашкой, спиральные конденсаторы и нагреватели для жидкостей, плоскопластинчатые нагреватели низкого давления для воздуха, воздухо- и газонагреватели из различных штампованных, ребристых и других профилей листов в системах газотурбинных и холодильных установок, компактные пакетные и сотовые теплообменники, применяемые на железнодорожном и других видах транспорта.

Конструкции пластин, применяемых при компоновке теплообменников подобного типа, представлены на (рис. 1.2).

Рис. 1.2 – Пластины для теплообменников: а – с ребрами: 1 – гладкими квадратными; 2 – гладкими прямоугольными; 3 – с другими формами гладких ребер; 4 – волнистыми; 5 – стерженьковыми; 6 – разрезными жалюзийными; 7 – разрезными пластинчатыми; б – пластинчатые: 8 – плоские; 9 – спиральные; в – с повышенной турбулентностью: 10 – со сфероидальными зигзагообразными каналами; 11, 12 – волнообразными и серповидными каналами

Аппараты с насадкой чаще всего бывают разборными. Насадка укладывается или насыпается на специальную решетку. Для высокотемпературных регенераторов фасонная огнеупорная насадка устанавливается на фундамент или на решетку из огнеупорного материала.

Теплообменные аппараты выполняют из огнеупорных материалов, графита, стекла, пластмасс. По конструктивным признакам они могут быть весьма разнообразными в зависимости от технологических условий нагрева или охлаждения, а также физико-химических свойств и температурного уровня рабочих сред.

По пространственному расположению теплообменные аппараты делятся на вертикальные, горизонтальные, наклонные; по числу ходов рабочих сред – на одно, двух, четырехходовые и т. д.; по взаимному направлению движения теплоносителей – на прямоточные, противоточные, прямоточно-противоточные и с разными вариантами перекрестного тока.

 

1-38


Поделиться:



Последнее изменение этой страницы: 2019-06-08; Просмотров: 232; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.046 с.)
Главная | Случайная страница | Обратная связь