Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Разъем для установки процессора



Разъем для установки процессора это прямоугольное посадочное место, на которое устанавливается процессор. В большинстве случаев разъем для установки процессора размещается в верхней части материнской платы, примерно по середине платы.

 

Разъемы для установки процессора отличаются в зависимости от производителя процессора (Intel или AMD), а также в зависимости от конкретной модели процессора. Универсальных материнских плат не бывает. Материнская плата всегда поддерживает процессоры только одного типа. Это нужно учитывать при выборе процессора и платы.

Информацию о поддерживаемых процессорах можно найти на официальном сайте производителя материнской платы.

Чипсет

Чипсет это основный компонент материнской платы. Как правило, чипсет находится намного ниже процессора. Это самая большая микросхема на плате и она закрыта радиатором.

Чипсет отвечает за работу всей платы, а также за взаемодействие процессора с остальными компонентами компьютера. От модели чипсета зависит, какими возможностями будет обладать материнская плата и компьютер в целом. В дешевые материнские платы встраиваются простые чипсеты, которые ограничивают функциональность компьютера. Например, все процессоры Sandy Bridge оснащаются встроенным графическим ускорителем, но использовать этот графический ускоритель могут только платы с чипсетом Z68.

 

При выборе материнской платы очень важно учитывать на базе какого чипсета она построена и какими возможностями обладает тот или иной чипсет.

В более старых компьютерах чипсет состоит из двух микросхем. Эти микросхемы называются северным и южными мостами. Начиная с процессоров на базе архитектур Intel Nehalem и AMD Sledgehammer, возможности северного моста встраиваются прямо в процессор. Поэтому на плате размещается только одна микросхема чипсета.

Слоты для установки оперативной памяти

Слоты для установки оперативной памяти это длинные разъемы справа или по обе стороны от процессора. На плате может быть установлено 2, 4, 8 и больше слотов для оперативной памяти. Но, в большинстве случаев количество слотов небольшое.

 

Слоты для оперативной памяти могут быть различных типов (DDR1, DDR2, DDR3). Перед покупкой оперативной памяти не обходимо узнать тип поддерживаемой памяти, количество слотов на материнской плате, а также максимальной объем памяти, которые поддерживает плата. Эту информацию можно получить на официальном сайте производителя платы.

Слоты расширения

Слоты расширения это слоты в нижней части платы. В отличие от слотов оперативной памяти, которые размещаются вертикально, слоты расширения расположены горизонтально. Кроме этого платы, установленные в слоты расширения, крепятся к корпусу компьютера с помощью специального винта.

 

На данный момент используются только два типа слотов расширения. Это PCI Express и PCI. Видеокарты устанавливаются в слоты PCI Express. Остальные платы (звуковые платы, ТВ-тюнеры и т.д.) могут устанавливаться как в PCI Express, так и в PCI.

SATA разъемы

SATA разъемы – это разъемы, предназначенные для подключения жестких дисков, оптических дисководов, а также SSD накопителей.

 

Как правило, SATA разъемы обозначаются красным цветом и размещаются в нижней части материнской платы.

Разъем питания

 

Разъем питание это разъем, с помощью которого материнская плата получает питание от блока питания. Как правило, этот разъем окрашен белым цветом и размещается в правой части материнской платы.

 

4) Операти́ вная па́ мять (англ. Random Access Memory, RAM, память с произвольным доступом) или операти́ вное запомина́ ющее устро́ йство ( ОЗУ ); комп. жарг. па́ мять, операти́ вка — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором.

Обмен данными между процессором и оперативной памятью производится:

· непосредственно;

· через сверхбыструю память 0-го уровня — регистры в АЛУ, либо при наличии аппаратного кэша процессора — через кэш.

Содержащиеся в современной полупроводниковой оперативной памяти данные доступны и сохраняются только тогда, когда на модули памяти подаётся напряжение. Выключение питания оперативной памяти, даже кратковременное, приводит к искажению либо полному разрушению хранимой информации.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим сна, что значительно сокращает уровень потребления компьютером электроэнергии. В режиме гибернации питание ОЗУ отключается. В этом случае для сохранения содержимого ОЗУ операционная система (ОС) перед отключением питания записывает содержимое ОЗУ на устройство постоянного хранения данных (как правило, жёсткий диск). Например, в ОС Windows XP содержимое памяти сохраняется в файл hiberfil.sys, в ОС семейства Unix — на специальный swap-раздел жёсткого диска.

В общем случае, ОЗУ содержит программы и данные ОС и запущенные прикладные программы пользователя и данные этих программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер под управлением ОС.

Оперативное запоминающее устройство, ОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный внешний модуль или располагаться на одном кристалле с процессором, например, в однокристальных ЭВМ или однокристальных микроконтроллерах.

 

5) Подсистему ROM BIOS часто называют просто BIOS (Basic Input Output System). Аппаратно она представляет собой элемент памяти (микросхема ROM) емкостью от 64 Кбайт у старых компьютеров и примерно до 2 Гбайт у современных моделей. На материнской плате микросхема ROM может быть припаяна непосредственно к плате (рис. 9.1, а) или установлена в D1P-разъем (рис. 9.1, б).

Как правило, для хранения BIOS используют микросхемы электрически стираемой программируемой постоянной памяти (Electrically Erasable Programmable Read-Only Memory, EEPROM), относящейся к микросхемам ПЗУ, которые можно стирать и перепрограммировать непосредственно в PC. Такой элемент BIOS называют Flash-BIOS. Производители выпускают обновленные версии BIOS, которые доступны через Интернет, поэтому грамотный пользователь может загрузить нужное обновление и записать его в микросхему Flash-ROM материнской платы.

Ведущими изготовителями ROM BIOS являются фирмы AMI, Award и Phoenix. Функции, выполняемые системами BIOS, одинаковы и не зависят от фирмы-изготовителя.

ROM BIOS выполняет четыре основные функции:

- предоставляет операционной системе драйверы основных устройств, находящихся на материнской плате, и осуществляет сопряжение между материнской платой и остальными средствами PC; ROM BIOS должен соответствовать конкретной материнской плате;

- содержит тестовую программу проверки системы, так называемую POST {Power On Self Test), которая при включении PC проверяет все важнейшие компоненты компьютера;

- содержит программу CMOS Setup для установки параметров BIOS и аппаратной конфигурации PC;

- содержит программу начальной загрузки системы (1NT 19h) Bootstrap, которая инициируется после успешного завершения программы POST.

Обозначение ROM расшифровывается как Read Only Memory (память только для чтения, ПЗУ), т. е. информацию из этой памяти можно только считывать, но данные записывать в память нельзя.

BIOS (Basic Input Output System - базовая система ввода/вывода) содержит набор основных функций управления стандартными внешними устройствами PC. Возникает вопрос: где хранятся значения, которые устанавливаются в CMOS Setup, если в ROM BIOS невозможно записать новую информацию? Изменения конфигурации (например, информация о новом винчестере) записываются в специальную область памяти (и оттуда считываются ROM BIOS), называемую CMOS RAM. Эта область памяти (емкостью 100-129 байт) расположена в контроллере периферийных устройств, который находится, как правило, в южном мосте чипсета. Для того чтобы записанные значения не были потеряны, контроллер обеспечивается питанием от аккумуляторной батареи. Таким образом, информация о конфигурации PC остается в памяти, даже если долго не включать компьютер.

Эта аккумуляторная батарея (рис. 9.2) внешне чаще всего представляет собой " большую таблетку", установленную в специальный разъем на материнской плате, она обеспечивает хранение установок CMOS Setup и работу системного таймера. Если вы заметили, что системное время " убегает", замените аккумуляторную батарею или установите внешний аккумулятор, как правило, с напряжением 3 В. Из-за дефектной или разрядившейся батарейки не только нарушится правильный отсчет времени, но одновременно потеряется и ин формация CMOS RAM, которая содержит, например, параметры винчестера и установки оптимальной конфигурации чипсета.

Скажем несколько слов о POST. Этот самостоятельный тест поможет вам при идентификации ошибок, если вы установили в PC новую материнскую плату, и при этом что-то не функционирует.

Во время выполнения программы POST на экране монитора появляются два типа сообщений:

- информационные

- сообщения об ошибках (на экране монитора и звуковые)

С помощью информационных сообщений можно идентифицировать версию и производителя BIOS, производителя материнской платы, чипсет, установленный на материнской плате, и др. Кроме того, на экране появляется информация об объеме установленной памяти (рис. 9.3, 9.4), подключенных устройствах (HDD, FDD, CD-ROM и др.). С помощью идентификационной строки, расположенной в нижней части экрана монитора, можно определить производителя материнской платы.

 

Периодически разработчики BIOS и материнских плат предлагают " особый" дизайн, но каким-либо успехом у пользователей данные новации не пользуются. В ряде BIOS могут быть встроены функции мультимедиа, например для проигрывания музыкальных компакт-дисков, что позволяет создать звуковой фон при установке операционной системы.

6) Шины PCI и PCI-X являются основными шинами расширения ввода/вывода в современных компьютерах; для подключения видеоадаптеров их дополняет порт AGP. Шины расширения ввода/вывода (Expansion Bus) являются средствами подключения системного уровня: они позволяют адаптерам и контроллерам периферийных устройств непосредственно использовать системные ресурсы компьютера — пространство адресов памяти и ввода/вывода, прерывания, прямой доступ к памяти. Устройства, подключенные к шинам расширения, могут и сами управлять этими шинами, получая доступ к остальным ресурсам компьютера. Шины расширения механически реализуются в виде слотов (щелевых разъемов) или штырьковых разъемов; для них характерна малая длина проводников, то есть они сугубо локальны, что позволяет достигать высоких скоростей работы. Эти шины могут и не выводиться на разъемы, но использоваться для подключения устройств в интегрированных системных платах.
Поначалу шина PCI вводилась как пристройка (mezzanine bus) к системам с шиной ISA. Она разрабатывалась в расчете на процессоры Pentium, но хорошо сочеталась и с процессорами i486. Позже PCI на некоторое время стала центральной шиной: она соединялась с шиной процессора высокопроизводительным мостом («северным» мостом), входящим в состав чипсета системной платы. Остальные шины расширения ввода/вывода (ISA/EISA или МСА), а также локальная ISA-подобная шина X-BUS и интерфейс LPC, к которым подключаются микросхемы системной платы (ROM BIOS, контроллеры прерываний, клавиатуры, DMA, портов СОМ и LPT, НГМД и прочие «мелочи»), подключались к шине PCI через «южный» мост. В современных системных платах с «хабовой» архитектурой шину PCI отодвинули на периферию, не ущемляя ее в мощности канала связи с процессором и памятью, но и не нагружая транзитным трафиком устройств других шин.
Шина PCI является синхронной — фиксация всех сигналов выполняется по положительному перепаду (фронту) сигнала CLK. Номинальной частотой синхронизации считается частота 33, 3 МГц, при необходимости она может быть понижена. Начиная с версии PCI 2.1 допускается повышение частоты до 66, 6 МГц при «согласии» всех устройств на шине. В РСГХ частота может достигать 133 МГц.
В PCI используется параллельная мультиплексированная шина адреса/данных (AD) с типовой разрядностью 32 бит. Спецификация определяет возможность расширения разрядности до 64 бит; в PCI-X версии 2.0 определен также 16-битный вариант шины. При частоте шины 33 МГц теоретическая пропускная способность достигает 132 Мбайт/с для 32-битной шины и 264 Мбайт/с для 64-битной; при частоте синхронизации 66 МГц — 264 Мбайт/с и 528 Мбайт/с соответственно. Однако эти пиковые значения достигаются лишь во время передачи пакета: из-за протокольных накладных расходов реальная средняя пропускная способность шины оказывается ниже.

 

 

Шина PCI позволяет объединять равноранговые устройства. Любое устройство шины может выступать как в роли инициатора транзакций (задатчика), так и в роли целевого устройства. Целевое устройство отвечает на транзакции, адресованные к его ресурсам (областям памяти и портам ввода/вывода). Ядро компьютера (центральный процессор и память) для шины PCI также представляется устройством — главным мостом (host bridge). В транзакциях, обращенных к устройствам PCI, инициированных центральным процессором, главный мост является задатчиком. В транзакциях от устройств PCI, обращающихся к ядру (к системной памяти), главный мост является целевым устройством. Право на управление шиной в любой момент времени дается лишь одному устройству данной шины; арбитраж запросов на управление шиной осуществляется централизованным способом. Арбитр, как правило, является частью моста.
Наличие активных устройств (помимо ЦП) позволяет выполнять в компьютере параллельно несколько операций обмена: одновременно с обращениями процессора могут выполняться транзакции от мастеров шины PCI. Эта параллельность — PCI Concurrency — возможна лишь для обменов по непересекающимся путям. Одновременный доступ нескольких инициаторов к одному ресурсу (как правило, к системной памяти) требует довольно сложной организации контроллера этого ресурса, но ради повышения суммарной эффективности системы на эти усложнения приходится идти. В системе с несколькими шинами PCI возможна параллельная работа устройств-мастеров на разных шинах — PCI Peer Concurrency. Однако если они обращаются к одному ресурсу (системной памяти), то какие-то фазы этих обменов все-таки должны будут выполняться последовательно.
Каждая физическая шина PCI позволяет объединять лишь небольшое число устройств: типовое ограничение по электрическим спецификациям — не более шести устройств на шине. Для увеличения числа подключаемых устройств применяют мосты PCI (PCI-to-PCI Bridge) — устройства PCI с парой интерфейсов, которыми шины объединяются в древовидную структуру. В корне этой структуры находится хост — «хозяин шины», в обязанности которого входит конфигурирование всех устройств, включая и мосты. В роли хоста, как правило, выступает центральный процессор с главным мостом. Мосты позволяют объединять шины PCI и PCI-X с разными характеристиками, а также подключать к PCI/PCI-X иные шины: (E)ISA, MCA, шины блокнотных ПК, PCI Express, Hyper Transport и другие. Шина PCI/PCI-X имеет несколько вариантов конструктивного оформления, часть из которых при наличии специального контроллера допускают горячую замену устройств:

 

1. шина объединения компонентов на печатной плате (системной плате или карте расширения);

2. слотовые разъемы для установки карт расширения (в конструктивах PC и МСА);

3. разъемы для малогабаритных карт расширения (Card Bus, Small PCI, Mini PCI);

4. модульные конструктивы для промышленных и инструментальных компьютеров (CompactPCI, PXI).

Важной частью шины PCI является система автоматического конфигурирования; конфигурирование выполняется каждый раз при включении питания и инициализации системы. Специальное конфигурационное ПО позволяет обнаружить и идентифицировать все установленные устройства, а также выяснить их потребности в ресурсах (областях памяти, адресах ввода/вывода, прерываниях). Спецификация PCI требует от устройств способности перемещать все занимаемые ресурсы (области в пространстве памяти и ввода/вывода) в пределах доступного адресного пространства. Это позволяет обеспечить бесконфликтное распределение ресурсов для множества устройств. Одно и то же функциональное устройство может быть сконфигурировано по-разному, отображая свои операционные регистры либо на пространство памяти, либо на пространство адресов ввода/вывода. Драйвер может определить текущую настройку, прочитав содержимое регистра базового адреса устройства. Драйвер также может определить номер запроса на прерывание, который используется устройством. Для поддержки конфигурирования устройств существует специальный набор функций PCI BIOS.

7) Параллельный интерфейс— LPT-порт

Порт параллельного интерфейса был введен в PC для подключения принтера — отсюда и пошло его название LPT-порт (Line PrinTer — построчный принтер). Традиционный, он же стандартный, LPT-порт (так называемый SPP-nopm) ориен­тирован на вывод данных, хотя с некоторыми ограничениями позволяет и вводить данные. Существуют различные модификации LPT-порта — двунаправленный, ЕРР, ЕСР и другие, расширяющие его функциональные возможности, повыша­ющие производительность и снижающие нагрузку на процессор. Поначалу они яв­лялись фирменными решениями отдельных производителей, позднее был принят стандарт IEEE 1284.

С внешней стороны порт имеет 8-битную шину данных, 5-битную шину сигналов состояния и 4-битную шину управляющих сигналов, выведенные на разъем-розет­ку DB-25S. В LPT-порте используются логические уровни ТТЛ, что ограничи­вает допустимую длину кабеля из-за невысокой помехозащищенности ТТЛ-ин­терфейса. Гальваническая развязка отсутствует — схемная земля подключаемого устройства соединяется со схемной землей компьютера. Из-за этого порт являет­ся уязвимым местом компьютера, страдающим при нарушении правил подключе­ния и заземления устройств. Поскольку порт обычно располагается на системной плате, в случае его «выжигания» зачастую выходит из строя и его ближайшее окружение, вплоть до выгорания всей системной платы.

С программной стороны LPT-порт представляет собой набор регистров, располо­женных в пространстве ввода-вывода. Регистры порта адресуются относительно базового адреса порта, стандартными значениями которого являются 3BCh, 378h и 278h. Порт может использовать линию запроса аппаратного прерывания, обыч­но IRQ7 или IRQ5. В расширенных режимах может использоваться и канал DMA.

Порт имеет поддержку на уровне BIOS — поиск установленных портов во время теста POST. Современные системные платы уже практически неимеют встроенного адаптера LPT-порта. Существуют карты ISA с LPT-портом, где он чаще всего соседствует с парой СОМ-портов, а также с контроллерами дисковых интерфейсов (FDC+IDE). Есть и карты PCI с дополнительными LPT-портами.

К LPT-портам подключают принтеры, плоттеры, сканеры, коммуникационные устройства и устройства хранения данных, а также электронные ключи, программа­торы и прочие устройства.

8) Последовательный порт, как и параллельный, появился задолго до появления персональных компьютеров архитектуры IBM PC. В первых персоналках COM-порт использовался для подсоединения периферийных устройств. Однако сфера его применения несколько отличалась от сферы применения параллельного порта. Если параллельный порт использовался в основном для подключения принтеров, то COM-порт (кстати, приставка COM – это всего лишь сокращение от слова communication) обычно применялся для работы с телекоммуникационными устройствами, такими, как модемы. Тем не менее, к порту можно подключить, например, мышь, а также другие периферийные устройства.

COM-порт, основные сферы применения:

1. Подключение терминалов

2. ~ внешних модемов

3. ~ принтеров и плоттеров

4. ~ мыши

5. Прямое соединение двух компьютеров

В настоящее время сфера применения СОМ-порта значительно сократилась благодаря внедрению более быстрого и компактного, и, кстати, тоже последовательного, интерфейса USB. Почти вышли из употребления внешние модемы, рассчитанные на подключение к порту, а также «COM-овские» мыши. Да и редко кто теперь соединяет два компьютера при помощи нуль-модемного кабеля.

Тем не менее, в ряде специализированных устройств последовательный порт до сих используется. Можно найти его и на многих материнских платах. Дело в том, что по сравнению с USB COM-порт имеет одно важное преимущество – согласно стандарту последовательной передачи данных RS-232, он может работать с устройствами на расстоянии в несколько десятков метров, в то время как радиус действия кабеля USB, как правило, ограничен 5 метрами.


Поделиться:



Последнее изменение этой страницы: 2019-06-08; Просмотров: 63; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь