Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Лк.№7. 2ч. Структура цифровой звуковой строки, квантование звуковых сигналов.



Аналого-цифровое преобразование


    Квантование представляет процесс сравнения отсчета АИМ сигнала со шкалой, имеющей конечное число уровней квантования, и отнесения его к ближайшему разрешенному уровню.

Иными словами, процесс квантования представляет округлению амплитуды отсчета до

ближайшего разрешенного уровня.
     При известном динамическом диапазоне квантуемого сигнала шаг квантования d определяет число уровней квантования М и, следовательно, число элементов (или разрядность) кода т, необ­ходимого для последующего кодирования квантованных отсчетов сигнала с целью формирования двоичного цифрового сигнала.

при равномерном кванто­вании защищенность Акв увеличивается на 6 дБ с возрастанием разрядов в кодовой группе и растет прямо пропорционально уровню сигнала Так, при переходе от восьмиразрядного к девятиразрядному коду защищенность от шумов квантования Акв увеличивается на 6 дБ, но при этом требуемая скорость передачи возрастает на 12,5 %, что не всегда является приемлемым.

 Почему важно наличие большого числа разрядов в устройствах ЦАП и АЦП?

 Дело заключается в том, что непрерывный (аналоговый) сигнал преобразуется в цифровой с некоторой погрешностью. Эта погрешность тем больше, чем меньше уровней квантования сигнала, т. е. чем дальше отстоят друг от друга допустимые значения квантованного сигнала. Число уровней квантования в свою очередь зависит от разрядности АЦП/ЦАП. Погрешности, возникающие в результате замены аналогового сигнала рядом квантованных по уровню отсчетов, можно рассматривать как его искажения, вызванные воздействием помехи. Эту помеху принято образно называть шумом квантования.
    Шум квантования представляет собой разность соответствующих значений реального и квантованного по уровню сигналов. В случае превышения сигналом значения самого верхнего уровня квантования ("старшего" кванта), а также в случае, когда значение сигнала оказывается меньше нижнего уровня квантования ("младшего" кванта), т. е. при цифровом ограничении сигнала, возникают искажения, более заметные по сравнению с шумом квантования. Для исключения искажений этого типа динамические диапазоны сигнала и АЦП должны соответствовать друг другу: значения сигнала должны располагаться между уровнями, соответствующими младшему и старшему квантам. При записи внешних источников звука это достигается с помощью регулировки их уровня, кроме того, применяется сжатие (компрессия) динамического диапазона. В звуковых редакторах существует операция нормализации амплитуды сигнала. После ее применения наименьшее значение сигнала станет равным верхнему уровню младшего кванта, а наибольшее — нижнему уровню старшего кванта. Таким образом, от ограничения сигнал сверху и снизу будет защищен промежутками, шириной в один квант.
    Для нормированного сигнала относительная величина максимальной погрешности квантования равна 1/N, где N — число уровней квантования. Этой же величиной, представленной в логарифмических единицах (децибелах), оценивается уровень шумов квантования АЦП звуковой карты. Уровень шумов квантования определяется по формуле:

D = 201g (1/N).

Для восьмиразрядного АЦП N = 256, D = -48 дБ;

Для шестнадцатиразрядного — N = 65536,; D= -96 дБ

Для двадцатиразрядного АЦП N = 1648576, D = -120 дБ.

Эти цифры наглядно демонстрируют, что с ростом разрядности АЦП шум квантования уменьшается. Приемлемым считается шестнадцатиразрядное представление сигнала, являющееся в настоящее время стандартным для воспроизведения звука, записанного в цифровой форме. С точки зрения снижения уровня шумов квантования дальнейшее увеличение разрядности АЦП особого смысла не имеет, т. к. уровень шумов, возникших по другим причинам (тепловые шумы, а также импульсные помехи, генерируемые элементами схемы распространяющиеся либо по цепям питания, либо в виде электромагнитных волн), все равно оказывается значительно выше, чем -96 дБ.
   Однако увеличение разрядности АЦП обусловлено еще одним условием — стремлением расширить его динамический диапазон. Динамический диапазон некоторого устройства обработки может быть определен выражением:

D = 201g (Smax/Smin),

 Где: Smax и Smin — максимальное и минимальное значения сигнала, который может быть преобразован в цифровую форму без искажения и потери информации. Поэтому выражение для динамического диапазона АЦП звуковой карты примет вид:

D = 201g (N).

Можно считать, что Smax= kN, a Smin = k1,

Где: k — некоторый постоянный коэффициент пропорциональности, учитывающий соответствие электрических величин (тока или напряжения) номерам уровней квантования.
   Динамический диапазон для шестнадцатиразрядного АЦП составляет 96 дБ, для двадцатиразрядного — 120 дБ. Иными словами, для записи звучания некоторого источника звука, динамический диапазон которого равен 120 дБ, требуется двадцатиразрядный АЦП. Если такого нет, а имеется только шестнадцатиразрядный, то динамический диапазон звука должен быть сжат на 24 дБ: со 120 дБ до 96 дБ. Но сжатие динамического иапазона звука вносит в него искажения. Поэтому важно для оцифровки звука использовать АЦП, имеющий максимальное количество разрядов. Динамические диапазоны большинства источников звука вполне соответствуют динамическому диапазону 16-битной звуковой карты. Кроме того, 24-битное или 32-битное представление сигнала применяется в основном на этапе обработки звука. Конечная аудиопродукция (CD Digital Audio и DAT) реализуется в 16-битном формате.

 Стандарты цифрового звукового вещания

Составные части стандартов цифрового звукового вещания — это система цифрового кодирования звуковых сигналов с целью сокращения их избыточности и система модуляции несущего колебания кодированным сигналом с целью формирования оптимального спектра радиосигнала для передачи в радиовещательных диапазонах.

Наибольшее распространение получило кодирование цифровых данных с компрессией в форматах MPEG (Moving Picture Expert Group). Этих форматов целое семейство:

MPEG-2, MPEG-4─ используются для кодирования цифровых видеозаписей,

MPEG-2-аудио используется на радиостанциях для сжатия аудиоинформации, а формат ─MPEG-1 Layer-3(MP-3)─ один из самых распространённых форматов для бытовых аудиозаписей и для передачи музыки по сети Интернет.


Поделиться:



Последнее изменение этой страницы: 2019-06-09; Просмотров: 201; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь