Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Назначение и типы подвесок



Подвеска автомобиля



Назначение и типы подвесок

Подвеской называется совокупность механизмов и устройств, соединяющих несущую систему (раму или кузов) автомобиля с его колесами. Подвеска предназначена для обеспечения плавности хода автомобиля и повышения безопасности его движения.

Плавностью хода называют свойство автомобиля гасить динамические воздействия, передаваемые колесам от неровности дороги во время движения. Кроме того, обеспечивая постоянный контакт колес с дорогой, подвеска способствует повышению безопасности движения, поскольку отрыв колес (или даже одного колеса) от дорожного полотна способен привести к потере управляемости автомобилем.

Через подвеску вес автомобиля передается на колеса и распределяется между ними. В то же время удары и толчки, возникающие при движении по неровностям дороги, передаются прежде всего элементам подвески, и уже через них на несущую систему автомобиля.

Наличие подвески обеспечивает возможность вертикального перемещения колес относительно корпуса автомобиля.

Составные элементы подвески

Подвеска разделяет все массы автомобиля на две части: подрессоренные и неподрессоренные.

Подрессоренными называют массы частей автомобиля, опирающиеся на подвеску. К подрессоренным массам автомобиля относятся кузов, рама, а также расположенные на них механизмы.

Неподрессоренные массы – массы частей автомобиля, расположенные между подвеской и дорогой – колеса, мосты, тормозные механизмы и пр.

В состав подвески входят:

· упругие элементы, которые смягчают толчки и удары, возникающие при движении автомобиля по неровностям дороги;

· гасящие элементы, предназначенные для быстрого гашения колебаний, возникающих в результате работы упругих элементов при прохождении колесами неровностей дороги;

· направляющие устройства, которые определяют характер перемещения колес относительно несущей системы автомобиля и дороги, а также передают продольные и поперечные усилия, возникающие между колесами и кузовом автомобиля;

· стабилизирующие устройства, которые уменьшают боковой крен и поперечные угловые колебания кузова автомобиля при прохождении поворотов и на косогорах.

К упругим элементам подвески могут относятся рессоры, пружины, торсионные валы, пневмобаллоны, а также различные демпфирующие элементы, например, выполненные из резиновых материалов.

К гасящим элементам относятся амортизаторы различных конструкций.

Направляющими устройствами являются рычаги и реактивные штанги. Часто роль направляющего элемента выполняет сама рессора. К направляющим элементам следует относить и балки мостов, однако, по установившимся определениям их относят к другим составным частям автомобиля.

Иногда стабилизирующие устройства могут выполнять часть функций упругих элементов подвески.
Стабилизирующее устройство 4 (рис. 1) или стабилизатор поперечной устойчивости является дополнительным упругим элементом в подвеске легкового автомобиля и представляет собой упругий стержень, установленный поперек автомобиля. Средней частью такой стабилизатор связан с кузовом, а концами – с направляющими устройствами 1 – рычагами подвески.
При боковых кренах концы стабилизатора перемещаются в разные стороны: один опускается, другой поднимается. Вследствие этого средняя часть стабилизатора закручивается, препятствуя тем самым крену и поперечным колебаниям кузова автомобиля.

 



Типы автомобильных подвесок

Автомобильные подвески классифицируются по различным определяющим показателям.

По типу направляющего устройства различают независимые, зависимые подвески, при этом зависимые подвески в свою очередь подразделяются на автономные и балансирные.

По типу применяемых упругих элементов различают рессорные, пружинные, торсионные, пневматические, гидропневматические и комбинированные подвески.

По наличию в конструкции гасящего устройства подвески бывают с амортизаторами и без амортизаторов.

По применяемым стабилизирующим устройствам различают подвески со стабилизаторами и без них.

Упругие элементы подвески



К наиболее распространенным упругим элементам автомобильной подвески относятся рессоры, пружины, торсионные валы и пневматические баллоны. Возможно выполнение упругих элементов и других типов – пневматических цилиндров, резиновых демпферов, гидропневматических устройств и т. п., но такие упругие элементы в конструкции современных автомобильных подвесок практически не применяются, если не считать таковыми резиновые буферы, отбойники, сайлентблоки и подушки рессор, которые тоже предназначены для снижения жесткости при взаимодействии элементов подвески с частями неподрессоренных масс и несущей системы.

Рессоры

Автомобильная рессора представляет собой пакет стальных листов выгнутой формы и различной длины, скрепленных между собой. Листы могут иметь прямоугольное, трапециевидное, Т-образное сечение и сечение в виде короба с полками.

Изгиб рессорных листов чаще всего выполняется плавной эллиптической конфигурации, поэтому такие рессоры называют полуэллиптическими. Встречаются рессоры и других форм, некоторые из которых предствлены на рисунке параграфа.
Кривизна разных листов рессоры не одинакова и зависит от их длины – она увеличивается с уменьшением длины листов, чем обеспечивается их плотное прилегание в собранном виде и разгрузку крайнего (самого длинного) листа 1, который называется коренным.

Листы рессор в собранном виде фиксируются с помощью стяжного болта 2 (рис. 1, а) и хомутов 3. В конструкции некоторых автомобильных рессор стяжной болт не предусматривается. Фиксация рессорных листов от взаимного относительного перемещения может осуществляться посредством специальных бобышек и углублений, выполненных в листах.

Коренной лист 1, имеющий наибольшую длину и толщину, крепится своими концами к кузову, а средней частью – к мосту. Как правило, один конец коренного листа крепится к кузову жестко, а другой свободно опирается на специальный кронштейн несущей системы (рамы или кузова) или крепится посредством серьги, что позволяет ему перемещаться при деформации рессоры.
Иногда оба конца рессоры крепятся к раме или кузову автомобиля посредством кронштейнов с массивными резиновыми подушками, что позволяет обоим концам рессоры перемещаться при ее деформации.

Поскольку конструкция рессорной подвески предотвращает продольное перемещение мостов с колесами относительно несущей системы автомобиля (рамы, кузова), такая подвеска не нуждается в направляющих элементах. Исключение составляют балансирные рессорные подвески, удерживающие на двух рессорах два моста, образующих тележку. При этом жесткая связь рессоры с мостами отсутствует и возможно их продольное перемещение относительно рамы автомобиля.
Поэтому в балансирных рессорных подвесках в качестве направляющих элементов применяют специальные штанги, шарнирно соединенные с мостами балансирной тележки и рамой автомобиля.

Поскольку между листами рессоры во время работы присутствуют силы трения, способствующие гашению колебаний, рессора выполняет часть функции гасящего элемента подвески. Трение между рессорными листами приводит к из интенсивному изнашиванию и потере упругих свойств, что может вызвать поломку отдельных листов и даже всей рессоры. Поэтому листы рессор при сборке смазывают графитной смазкой, обеспечивающей снижение сил трения и стойкой к неблагоприятным дорожным условиям (грязь, влага).
На легковых автомобилях для уменьшения трения между листами могут устанавливаться антифрикционные (чаще всего – полимерные) прокладки или шайбы, которые крепятся к листам посредством специальных технологических выступов, отверстий или ниш.

Рессорные листы изготавливают из высококачественной пружинной стали, обладающей повышенными упругими свойствами. Тем не менее, в процессе длительной эксплуатации, особенно, в тяжелых дорожных условиях, рессора теряет свои упругие свойства и эллипсоидную форму. В таких случаях рессора подвергается ремонту – разбирается на листы и каждый из них прокатывается в специальных станках для восстановления эллиптичной формы, которая обеспечивает надлежащую упругость.





Рессорные стали

Для изготовления рессор применяются специальные пружинно-рессорные стали, обладающие рядом свойств, среди которых следует отметить упругость и твердость. Марки сталей, наиболее широко применяемые для изготовления рессорных листов отечественных автомобилей, приведены ниже.

· ГАЗ-24 Волга, Москвич (412, 2140 и др.) - Сталь 50ХГА

· ГАЗ (52, 53 и др.) - Сталь 50ХГ

· МАЗ, ЗИЛ-130 и модификации - Сталь 60С2

· КамАЗ - передние - Сталь 60С2, задние - Сталь 60С2ХГ

Пружины

Пружины (рис. 1, б) в качестве упругого элемента применяются, как правило, на независимых подвесках. Наибольшее распространение получили цилиндрические витые пружины, изготавливаемые из стального прутка круглого сечения. Поскольку особенности конструкции пружины позволяют получать более широкий диапазон перемещений элементов подрессоренных и неподрессоренных масс автомобиля, пружинные подвески способны обеспечивать лучшую плавность хода по сравнению с рессорной подвеской.
Упругий элемент в виде пружины состоит из одной детали, поэтому отсутствует трение, присущее листам рессоры. Благодаря этому пружина не нуждается в каком-либо уходе в период эксплуатации.

Тем не менее, как и рессорные листы, пружина способна терять форму (проседать) и упругость, поэтому после определенного периода эксплуатации может быть отремонтирована восстановлением первоначальной высоты путем растяжки.
Пружинные упругие элементы менее подвержены поломкам по сравнению с рессорными листами, поэтому их можно считать более надежными.

При установке на автомобиль пружины в качестве упругого элемента, она верхним концом упирается в специальные элементы несущей системы (рамы, кузова), выполненные в виде колпака или чашки, а нижним концом – опирается на аналогичные элементы моста или нижних рычагов подвески.

Демонтаж пружины из подвески, как и ее монтаж, требуют соблюдения определенных мер предосторожности, поскольку сжатая пружина при высвобождении может травмировать работника.



Торсионы

Торсионные подвески находят применение на многоосных автомобилях с независимой подвеской, на легковых автомобилях малого и большого класса, а также на некоторых типах автомобильных прицепов. На многих моделях спортивных и гоночных автомобилей этот тип подвески применяется из-за малых габаритов и массы.

Широко применяются торсионные подвески на военной технике и машинах высокой проходимости.

Торсион представляет собой стальной упругий стержень, работающий на скручивание, который может быть выполнен сплошным или пустотелым.
Для крепления торцов торсиона на его концах выполняются утолщения со шлицами или в форме шестигранника.
Одним концом торсион входит в ответные шлицы на несущей системе (раме или кузове) автомобиля, а другим – в шлицы рычага подвески. При перемещении колеса по неровностям дороги торсион закручивается, обеспечивая упругую связь колеса с рамой или кузовом автомобиля.

Торсионы имеют те же преимущества, что и пружины, однако они более компактны, что позволяет размещать их в различных местах автомобиля. Кроме того, они лучше защищены от механических повреждений.
Тем не менее, они менее долговечны, чем пружины и дороже в изготовлении, чем листовые рессоры.




Пневматические подвески

Пневматической называется подвеска, в которой роль упругого элемента выполняет сжимающийся газ, обычно воздух, но могут применяться и другие газы, например, азот. Рабочий газ заключен в резинотканевый баллон - пневмобаллон (рис. 1, г), который может иметь различную форму и конструкцию.

Кордная ткань выполняется из полиамидных волокон (нейлона или капрона) и защищена от повреждений поверхностными слоями резины.

Положительным качеством пневмобаллонной подвески является возможность изменения давления рабочего газа в баллонах, что позволяет изменять несущую способность и упругие свойства подвески в автоматическом режиме, в зависимости от степени загрузки транспортного средства. Давление в баллонах регулируется специальным регулятором положения несущей системы (кузова или рамы) в зависимости от статической нагрузки (количества пассажиров или груза).

При увеличении нагрузки, кузов проседает и воздействует на датчик или чувствительный элемент регулятора, после чего впускной клапан регулятора открывается и подает в пневмобаллоны дополнительно сжатый воздух (или газ) из пневмосистемы автомобиля (или из емкости для хранения запаса газа), повышая давление в пневмобаллонах, после чего несущая способность подвески увеличивается. При уменьшении нагрузки на кузов регулятор выпускает часть воздуха из пневмобаллонов, уменьшая жесткость подвески.

Преимущества пневматической подвески:

· возможность изменения жесткости при различных нагрузках в кузове;

· сохранение постоянства ходов подвески;

· получение переменного и поддержание постоянного дорожного просвета;

· небольшая масса;

· относительно высокий срок службы (в три-пять раз выше, чем у листовых рессор).

Тем не менее, такие подвески применяются ограниченно по причине сложности и, соответственно, стоимости изготовления.
Пневматические подвески находят применение в некоторых марках автобусов, грузовых автомобилей средней и большой грузоподъемности, а также прицепах и полуприцепах.
По понятным причинам, пневматическая подвеска применима на транспортных средствах, оборудованных компрессором для получения сжатого газа. Перевозка запаса сжатого газа в отдельных баллонах приводит к существенному усложнению конструкции транспортного средства.



Амортизаторы



Амортизаторами называются специальные устройства, предназначенные для быстрого гашения колебаний несущей системы автомобиля – рамы или кузова. При движении по неровностям дороги упругие элементы подвески принимают толчки и удары со стороны неподрессоренных масс автомобиля и, сглаживая их, придают кузову (раме) плавные колебательные перемещения.
Отсутствие амортизаторов приведет к длительному раскачиванию несущей системы и подрессоренных масс, поскольку упругие элементы (за исключением рессор) не способны быстро гасить собственные колебания, а также резонансные явления. Это может привести к отрыву колес от дороги и потере управляемости, дискомфорту поездки, а также к интенсивному износу и повреждению узлов и деталей автомобиля.

Гасящее действие амортизатора обеспечивается работой сил трения, при этом энергия механического колебательного движения преобразуется в тепловую энергию и рассеивается в окружающей среде.


Требования, предъявляемые к амортизаторам

К амортизаторам, применяемым в качестве гасителей колебаний на современных автомобилях, предъявляются следующие требования:

· повышение интенсивности гасящего эффекта с ростом скорости колебаний во избежание раскачивания кузова и колес;

· малая интенсивность гашения колебаний при движении автомобиля по незначительным неровностям дороги;

· минимальная нагрузка амортизатора на кузов или раму;

· стабильность работы в различных климатических, дорожных и нагрузочных условиях.

 

Газонаполненный амортизатор

Газонаполненные амортизаторы, в отличие от гидравлических, конструктивно выполняются однотрубными. Если в гидравлическом двухтрубном амортизаторе рабочая жидкость находится в непосредственном контакте с воздухом, то в газонаполненном амортизаторе (рис. 2) рабочая жидкость изолирована от воздуха плавающим поршнем 8 с уплотнителем 9. Таким образом, корпус 7 в нижней части заполнен рабочей жидкостью 5, а в верхней части – газом 6.
Давление газа в верхней полости – 0,6…0,8 МПа.

Иногда газонаполненные амортизаторы называют газовыми, что не совсем правильно, поскольку основным рабочим телом в них является не газ, а жидкость. Сжатие газа в таких амортизаторах направлено лишь на компенсацию объема цилиндра, который вытесняется поршневым штоком. В качестве газа для газонаполненных амортизаторов чаще всего используется нейтральный азот, который закачивается под давлением.

Поршень 12 закреплен на штоке гайкой 10. В поршне выполнены каналы 11 переменного сечения, а на его цилиндрической поверхности имеются щели.
Каналы 11 перекрыты дисками 13, соприкасающимися с шайбой 15, образуя клапан.
Герметичность штока и корпуса обеспечивается уплотнительным узлом, в который входят резиновая шайба 3, уплотнительная манжета 1, направляющая 17 штока, фасонная шайба 4 и запорное кольцо 2.

Жидкость под давлением омывает резиновую шайбу 3 и уплотнительную манжету 1 и прижимает их к корпусу 7 и штоку 16.

При ходе сжатия (рис. 2, б) под давлением над поршнем диски 13 отжимаются от шайбы 15, и рабочая жидкость через звездообразные вырезы в дроссельной шайбе перетекает в надпоршневую полость.

При малых скоростях перемещения поршня диски 13 занимают первоначальное положение, и рабочая жидкость проходит в основном через зазор между поршнем и цилиндром. Таким образом, один клапан работает попеременно на сжатие и на отбой.

При резких перемещениях поршня гашение происходит в основном за счет газовой подушки. Так, при ходе сжатия плавающий поршень 8 сжимает газ 6 и компенсирует изменение объема рабочей жидкости в рабочей полости амортизатора из-за входа в нее штока.
При ходе отбоя давление сжатого газа перемещает плавающий поршень 8 вниз, компенсируя изменение объема рабочей жидкости вследствие выхода штока 16 из цилиндра амортизатора.

Рабочие жидкости, применяемые в качестве рабочего тела в газонаполненных амортизаторах, аналогичны жидкостям, применяемым в гидравлических телескопических амортизаторах.





Независимые подвески



Независимые подвески (рис. 1 и 2) получили широкое распространение в передних управляемых колесах легковых автомобилей, поскольку при их использовании существенно улучшается возможность компоновки моторного отсека или багажника и снижается возможность возникновения автоколебания колес.

В качестве упругого элемента в независимой подвеске обычно применяют пружины, несколько реже – торсионы и другие элементы. При этом расширяется возможность применения пневматических упругих элементов. Упругий элемент, за исключением рессоры, практически не влияет на функции направляющего устройства.
Для независимых подвесок существует множество схем направляющих устройств, которые классифицируются по числу рычагов и расположению плоскости качания рычагов.

В независимой передней подвеске рычажного типа автомобилей «Волга» ступица колеса установлена двумя радиально-упорными коническими роликоподшипниками на цапфе поворотного кулака, который шкворнем соединен со стойкой. Между стойкой и поворотным кулаком установлен упорный шарикоподшипник.
Стойка резьбовыми втулками шарнирно соединена с верхним и нижним вильчатыми рычагами, которые, в свою очередь, связаны с осями, закрепленными на поперечинах рамы с помощью резиновых втулок. Упругим элементом подвески служит пружина, упирающаяся верхним концом через виброизолирующую прокладку в штампованную головку поперечины, а нижним – в опорную чашку, прикрепленную болтами к нижним рычагам. Вертикальные перемещения колес ограничены упором резиновых буферов в балку.
Телескопический гидравлический амортизатор двустороннего действия установлен внутри пружины и соединен верхним концом с поперечной рамой через резиновые подушки, а нижним концом – с нижними рычагами.

В последнее время широкое распространение получила подвеска типа «качающаяся свеча» - подвеска Мак-Ферсон (или Макферсон, англ. MacPherson suspension). Она состоит из одного рычага и телескопической стойки, с одной стороны жестко связанной с поворотным кулаком, а с другой – закрепленной в пяте. Пята представляет собой упорный подшипник, установленный в податливом резиновом блоке, закрепленном на кузове.
Стойка имеет возможность покачиваться за счет деформации резинового блока и поворачиваться вокруг оси, проходящей через упорный подшипник наружный шарнир рычага.

К преимуществам данной подвески можно отнести небольшое число деталей, меньшую массу и пространство в в моторном отсеке или багажнике. Обычно стойка подвески объединяется с амортизатором, а упругий элемент (пружина, пневмоэлемент) устанавливается на стойке.

К недостаткам подвески Мак-Ферсон следует отнести повышенный износ направляющих элементов стойки при больших ходах подвески, ограниченные возможности варьирования кинематических схем и больший уровень шума (по сравнению с подвеской на двух поперечных рычагах..

Подвеска MacPherson suspension названа по имени американского инженера из фирмы «Форд» Эрла Стили Макферсона, который разработал её во второй половине сороковых годов прошлого века.
Впрочем, считается, что аналоги подвески Макферсона использовались на автомобилях и ранее.

Массовое распространение эта подвеска получила в семидесятые годы, когда появились технологии, позволяющие серийно выпускать надежные и долговечные амортизаторные стойки. Несмотря на ряд недостатков, вскоре подвески Макферсон нашли широкое применение в легковом автомобилестроении благодаря технологичности и дешевизне.

По замыслу Э. Макферсона его «качающаяся свеча» должна была устанавливаться и на передние, и на задние колеса автомобилей, однако на первых серийных моделях такая подвеска применялась только для передних колес, а заднюю выполняли зависимой из соображений простоты и дешевизны.

И лишь в 1957 году инженер фирмы «Лотус» Колин Чепмен применил подвеску аналогичной конструкции для задних колёс автомобиля модели «Лотус Элит», поэтому её часто называют «подвеской Чепмена».

Устройство и работа подвески Макферсон подробно описана ниже, на примере передней независимой подвески переднеприводных автомобилей ВАЗ (ВАЗ-2108, -2109 и т. д.).

Подвеска с качающейся амортизаторной стойкой имеет кованый рычаг, к которому через резиновые подушки присоединено плечо стабилизатора. Поперечная часть стабилизатора резиновыми подушками и стальными скобами крепится к поперечине кузова.
Таким образом, диагональное плечо стабилизатора передает на кузов продольные усилия со стороны колеса и, следовательно, составляет часть интегрированного рычага направляющего устройства подвески.
Резиновые подушки позволяют компенсировать перекосы, возникающие при качании такого составного рычага, а также гасят продольные вибрации, передаваемые от колеса на кузов.

Шток телескопической стойки закреплен на нижнем основании резинового блока верхней пяты и не поворачивается вместе со стойкой и установленной на ней пружиной. В таком случае при любых поворотах управляемых колес стойка также поворачивается относительно штока, снимая трение покоя между штоком и цилиндром, что улучшает реагирование подвески на малые дорожные неровности.

Пружина устанавливается не соосно стойке, а наклонена в сторону колеса для того, чтобы уменьшить поперечные нагрузки на штоке, его направляющей и поршне, возникающие под воздействием вертикального усилия на колесе.

Особенностью подвески управляемых колес является то, что она должна позволять колесу совершать повороты независимо от прогиба упругого элемента. Это обеспечивается с помощью так называемого шкворневого узла.
Подвески могут быть шкворневыми и бесшкворневыми.

При шкворневой подвеске поворотный кулак закреплен на шкворне, который установлен с некоторым наклоном к вертикали на стойке подвески. Для уменьшения момента трения в этом шарнире могут применяться игольчатые, радиальные и упорные шариковые подшипники качения. Наружные концы рычагов подвески связаны со стойкой цилиндрическими шарнирами, обычно выполненными в виде смазываемых подшипников скольжения.

Основным недостатком шкворневой подвески является большое число шарниров. При качании рычагов направляющего устройства в поперечной плоскости невозможно достичь «антиклевкового эффекта» из-за наличия центра продольного крена подвески, так как оси качания рычагов должны быть строго параллельны.

Гораздо большее распространение получили бесшкворневые независимые подвески, где цилиндрические шарниры стойки заменены сферическими. В конструкцию данного шарнира входит палец с полусферической головкой, на него надет металлокерамический опорный вкладыш, работающий по сферической поверхности корпуса шарнира.
Палец опирается на вкладыш из специальной резины с нейлоновым покрытием, установленный в специальной обойме. Корпус шарнира крепится к рычагу подвески. При повороте колеса палец поворачивается вокруг своей оси во вкладышах.

При прогибах подвески палец совместно с вкладышем качается относительно центра сферы – для этого в корпусе имеется овальное отверстие. Этот шарнир является несущим, так как через него передаются вертикальные силы от колеса к упругому элементу, пружине, опирающейся на нижний рычаг подвески.
Рычаги подвески крепятся к кузову либо посредством цилиндрических подшипников скольжения, либо с помощью резинометаллических шарниров, работающих за счет деформации сдвига резиновых втулок. Последние требуют смазывания и обладают виброизолирующим свойством.











Подвеска автомобиля



Назначение и типы подвесок

Подвеской называется совокупность механизмов и устройств, соединяющих несущую систему (раму или кузов) автомобиля с его колесами. Подвеска предназначена для обеспечения плавности хода автомобиля и повышения безопасности его движения.

Плавностью хода называют свойство автомобиля гасить динамические воздействия, передаваемые колесам от неровности дороги во время движения. Кроме того, обеспечивая постоянный контакт колес с дорогой, подвеска способствует повышению безопасности движения, поскольку отрыв колес (или даже одного колеса) от дорожного полотна способен привести к потере управляемости автомобилем.

Через подвеску вес автомобиля передается на колеса и распределяется между ними. В то же время удары и толчки, возникающие при движении по неровностям дороги, передаются прежде всего элементам подвески, и уже через них на несущую систему автомобиля.

Наличие подвески обеспечивает возможность вертикального перемещения колес относительно корпуса автомобиля.


Поделиться:



Последнее изменение этой страницы: 2019-06-09; Просмотров: 405; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.051 с.)
Главная | Случайная страница | Обратная связь