Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Стекло марки «пирекс» (P irex)



Стекло марки «пирекс» (Pirex) является боросиликатным стеклом с содержанием не менее 80 % SiO2, 12-13 % B2O3, 3-4 % Na2O и 1-2 % Al2O3. Оно встречается под разными названиями: корнинг (США), дюран 50, йенское стекло G20 (Германия), гизель, монекс (Англия), ТС (Россия), совирель (Франция), симакс (Чехия).

Температура размягчения данного вида стекла до динамической вязкости составляет 580-590 0С. И все же стекло пригодно для работы при температурах до 800 0С при атмосферном давлении и не более 650 0С при работе в вакууме. В отличие от кварцевого стекла «пирекс» до 600 0С практически непроницаем для N2, O2, H2, He. Нагретые фосфорная и фтороводородня кислоты, водные растворы (даже 5 %) щелочей, расплавы щелочей разрушают стекло «пирекс».

Стекло марки Викор (Vicor)

Стекло марки «викор» содержит около 96 % SiO2 и обладает многими свойствами кварцевого стекла. Получают «викор» обработкой боросиликатного стекла хлороводородной кислотой при нагревании, извлекая бораты щелочных металлов. Остающийся тонкопористый материал подвергают спеканию.

 

Другие марки лабораторных стекол

 

В России выпускается несколько марок химико-лабораторных стекол: K-50 (ТХС-2), №29 (ХС-2), Л-80 (ХС-3), АМК (ХС-3). Химический состав стекол данных марок приведен в таблице 1.

 

Таблица 1 – Химический состав лабораторных стекол

Марка

Сорт

Состав, %

SiO2 B2O3 Al2O3 CaO BaO Na2O K2O MgO
ТСХ-1 Термически и химически стойкое 1-го класса 72, 4 8, 4 3, 6 2, 0 4, 5 5, 1 1, 8 -
ТСХ-2 Л-50 Термически и химически стойкое 1-го класса 74, 5 6, 6 5, 5 0, 7 4, 5 4, 2 4, 0 -
ХС-2 №29 Химически стойкое 2-го класса 71, 5 2, 0 2, 5 6, 5 - 14, 5 0, 5 2, 5
ХС-3 Л-80

Химически стойкое 3-го класса

68, 8 - 3, 7 7, 5 3, 5 10, 0 3, 0 3, 5
ХС-3 АМ 71, 5 - 1, 3 7, 2 4, 5 14, 5 1, 0 3, 0
ХС-3 АМК 72, 0 - 1, 5 10, 0 - 14, 0 - 2, 5

 

 

Температура размягчения стекла марок, указанных в табл. 1 составляет 540-640 0С.

При воздействии воды и водных растворов солей на стекло в результате растворения и гидролиза щелочных металлов на поверхности силикатов образуется защитная пленка из SiO2. Такая пленка устойчива в нейтральных и кислых растворах (за исключением HF), но разрушается в щелочных согласно
реакциям:

SiO2 + 4KOH = K2SiO4 + 2H2O

H2SiO4 + 4KOH = K2SiO4 + 4H2O

 

Химическую устойчивость лабораторной посуды, изготовленной из стекла марок ХС-2 и ХС-3, можно повысить в несколько раз путем обработки внутренней ее поверхности разбавленным раствором серной или хлороводородной кислот и выдержкой посуды в этих кислотах в течение 10-20 ч.

 


Фарфор

Фарфор – белый керамический материал, обладающий водо- и газонепроницаемостью и механической прочностью. Состоит из SiO2 (75 %), Al2O3 (19-21 %), K2O (3-4 %)

 Термостойкость неглазурированного фарфора составляет 1400-1500 0С. Глазурированный фарфор менее термостоек и его можно применять только до 1200 0С. А при длительном нагревании такого фарфора при температуре 1000 0С глазурь расстекловывается и отслаивается.

Фарфор химически устойчив к действию большинства кислот и кислых расплавов, за исключением HF и H3PO4. Хлороводород разъедает фарфор при 800 0С, а выше 1000 0С фарфор разрушается от воздействия хлора. Фарфор постепенно разрушается при контакте с расплавами и концентрированными водными растворами гидроксидов щелочных металлов, кальция и бария.

Фарфор применяют для производства тиглей, ступок, чашек, шпателей, стаканов и других лабораторных изделий. Тонкостенные фарфоровые тигли можно вносить непосредственно в пламя газовой горелки, а затем охлаждать до комнатной температуры. Толстостенные фарфоровые изделия следует нагревать и охлаждать с осторожностью.

Полимерные материалы

Ассортимент полимерных материалов, применяемых в лабораториях органического синтеза, увеличивается с каждым годом. Химическая посуда, изготовленная из полимерных материалов имеет ряд преимуществ перед стеклянной, однако существуют и серьезные недостатки, из-за которых именно стекло остается главным и важнейшим материалом при изготовлении лабораторной химической посуды.

Основным преимуществам полимерной посуды перед стеклянной
является ее дешевизна. Так, средняя цена воронки 80× 56 из полипропилена составляет 15 рублей, такая воронка из стекла стоит около 35 рублей. Еще одним важным преимуществом является более высокая химическая стойкость, особенно к растворам и расплавам щелочей и к действию фтороводородной и фосфорной кислот. Однако, температурные ограничения (-10 ÷ 140 оС) не позволяют более широко применять полимерную посуду и их ассортимент, как правило, ограничен такой вспомогательной посудой, как воронки, мерные цилиндры, мензурки, химические стаканы, шланги и др.

 


Фторопласт- 4 (тефлон)

Фторпласт-4 (тефлон в США, полифлон в Японии, хостафлон в Германии, флюон в Англии ) – политетрафторэтилен ( СF2 CF2 )n, обладает высокой химической стойкостью. Фторопласт-4 устойчив к действию кипящих фтороводородной, серной, азотной, фосфорной кислот и их смесей. Тефлон также проявляет высокую устойчивость в растворах и расплавах щелочей (KOH, NaOH). Не разрушается фторопласт-4 и под действием кипящих органических растворителей. Такие реагенты как фтор (F2), трихлорид фтор (FCl2), дифторид кислорода (OF2) оказывают заметное влияние только при температуре выше 150 оС. Щелочные металлы и их оксиды легко разрушают полимер при температуре выше 200 оС. Изделия из фторопласта-4 применяют в интервале температур от -190 до +260 оС. Разложение полимера происходит при температуре выше 360 оС.

Фторопласт-4 обладает низким коэффициентом трения, хорошими диэлектрическими свойствами, но низкой теплопроводностью. Из фторопласта часто производят химические стаканы, чашки, трубки, шланги, сифоны, пластины для фильтрования.

 

Фторопласт-3

Фторопласт -3 (дайфло в Японии, кель-F в США) - полихлорфторэтилен (CF 2 CClF)n. Представляет собой прозрачный полимер, уступающий фторопласту-4 по химической и термической устойчивости.Фторопласт-3 начинает разрушаться при температуре выше 200 оС. Изделия из этого полимера можно охлаждать даже жидким азотом, не опасаясь растрескивания.

Фторопласт-3 устойчив к действию большинства кислот, растворителей, окислителей, включая фтор (F2). При нагревании в хлорсодержащих органических растворителях (хлороформ, дихлорэтан, дихлорметан, тетрахлорметан), толуоле, диэтиловом эфире фторопласт-3 набухает с увеличением массы примерно на 20 %.

Из фторопласта-3 производят в основном мерную посуду.

 

Полиэтилен

Полиэтилен – прозрачный полимер с мономерной единицей ( CH2 )n. В настоящее время производится полиэтилен высокого давления (политен, луколен), устойчивый до 100 оС, и полиэтилен низкого давления (хостален), сохраняющий свою прочность до 120 оС. В сосудах из полиэтилена низкого давления можно кипятить воду. Однако такие изделия очень плохо переносят охлаждения до низких температур. Так, ниже -30 оС, изделия из полиэтилена становятся твердыми, как стекло.

Следует отметить высокую химическую устойчивость полиэтилена в отношении концентрированных галогеноводородных кислот (кроме фтороводородной), фосфорной кислоты, 30 %-й азотной кислоты и 50 %-го водного раствора KOH и NaOH. В концентрированной серной кислоте полиэтилен устойчив при температуре ниже 40 оС. В органических растворителях происходит его набухание.

Из всех полимерных материалов полиэтилен обладает наименьшей проницаемостью для водных паров.

Как правило, из полиэтилена производят мерную лабораторную посуду, в том числе для работ с фтороводородной кислотой любой концентрации.

 

Полипропилен

Полипропилен (моплен, новолен, провакс и др.) – полимер с мономерной единицей ( CH2 CH(CH3) )n, по химической стойкости уступает лишь фторопластам. Рабочая температура лежит в интервале от -20 до +140 оС.

В условиях комнатной температуры изделия из полипропилена устойчивы к действию водных растворов галогеноводородных кислот, фосфорной кислоты, хлорной кислоты (до 10 %), азотной (до 50 %) и серной (до 90 %) кислот. Также полипропилен не разрушается в водных растворах гидроксидов калия и натрия, аммиака, пероксида водорода. Органические растворители вызывают незначительное набухание полипропилена. Галогены и большинство органических кислот абсорбируются полипропиленом и медленно диффундируют через него.

Из полипропилена, в основном, производят мерную посуду, химические стаканы, шланги и пробки.

 


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 82; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь