Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Является ли R реальным процессом?



 

В предыдущей главе мы сделали попытку понять и принять головоломные Z -загадки квантовой теории. Не все эти феномены получили на настоящий момент экспериментальное подтверждение — например, квантовая сцепленность на расстоянии нескольких световых лет72 — и тем не менее, уже накопленных экспериментальных данных, свидетельствующих о существовании такого рода эффектов, вполне достаточно, чтобы убедиться в том, что Z -загадки и в самом деле следует принимать всерьез, поскольку они отражают истинные аспекты поведения самых разных объектов, составляющих тот мир, в котором мы живем.

Процессы, протекающие в нашем физическом мире на квантовом уровне, действительно не поддаются интуитивному осмыслению и во многом совершенно отличны от «классического» поведения, которое мы наблюдаем на более привычном уровне восприятия. Эффекты квантовой сцепленности на расстоянии нескольких метров являются неотъемлемой частью квантового поведения окружающих нас объектов — по крайней мере, это справедливо для объектов квантового уровня (таких, как электроны, фотоны, атомы и молекулы). Контраст между этим странным квантовым поведением «микроскопических» объектов (пусть и разделенных вполне макроскопическим расстоянием) и более привычным классическим поведением объектов «больших» лежит в основе проблемы X -загадок квантовой теории. Может ли, в самом деле, один физический закон выступать в двух различных ипостасях — каждая для «своего» уровня феноменов?

Такое предположение несколько расходится с тем, что мы обычно ожидаем от физического закона. Одним из величайших достижений физики семнадцатого века стала динамика Галилея—Ньютона, согласно которой движение небесных тел подчиняется в точности тем же законам, что управляют движением объектов у нас дома, на Земле. Со времен древних греков (или еще более ранних) ученые полагали, что в небе должны действовать одни законы, а на Земле — другие. Галилей же с Ньютоном смогли показать, что законы одни и те же, различия исключительно в масштабе — фундаментальное прозрение, роль которого в развитии науки переоценить невозможно. Тем не менее (как указывает профессор Иэн Персивал из Лондонского университета), в отношении квантовой теории мы, похоже, решили перенять образ мышления древних греков — один набор законов у нас работает на классическом уровне, а другим, совершенно на первый непохожим, мы пользуемся для описания процессов на квантовом уровне. Я придерживаюсь мнения — и это мнение разделяет, если можно так выразиться, весьма представительное меньшинство физиков, — что такое состояние научной мысли является не чем иным, как временным ступором, и можно предположить, что отыскание соответствующих квантово-классических законов, действующих единообразно на всех уровнях феноменов, возвестит научный прорыв, сравнимый по масштабу с тем, у истоков которого стояли Галилей и Ньютон.

Читатель, впрочем, может вполне резонно поинтересоваться, действительно ли та картина, которую дает стандартная квантовая теория для феноменов квантового уровня, не годится для объяснения и классических феноменов. Я убежден, что нет; однако многие склонны это мое убеждение оспаривать, утверждая, что поведение больших или сложных (в некотором смысле) физических систем, каждый из компонентов которых действует в полном согласии с законами квантового уровня, в сущности совпадает с поведением классических объектов (если и не абсолютно, то с очень высокой степенью точности). Попробуем для начала выяснить, можно ли счесть это утверждение — суть которого заключается в том, что наблюдаемое «классическое» поведение макроскопических объектов есть следствие совокупного квантового поведения их микроскопических составляющих, — хоть сколько-нибудь правдоподобным. Если обнаружится, что нельзя, то нам придется поискать другой путь, который, быть может, приведет нас к более последовательному выводу, имеющему смысл на всех уровнях феноменов. Мне, впрочем, следует предупредить читателя о том, что вся эта тема буквально кишит противоречиями. Существует множество самых разнообразных точек зрения, и пытаться дать всесторонний обзор их всех было бы с моей стороны крайне неблагоразумно, не говоря уже о том, чтобы представить детальное опровержение тех из них, что я нахожу невероятными или несостоятельными. Я прошу читателя отнестись снисходительно к тому, что точки зрения, о которых я таки упомяну, будут во многом изложены так, как они выглядят с моей собственной колокольни. Очевидно, что я не смогу сохранить полную беспристрастность, говоря о людях, мнение которых настолько чуждо моему, поэтому я хочу заранее попросить прощения за все те, возможно несправедливые, слова, которые я скажу.

Первая фундаментальная трудность связана с отысканием четкой границы, где квантовые процессы, характеризующиеся сохранением суперпозиций различных альтернативных возможностей, действительно переходят — под действием редукции R — в процессы классического уровня, на котором суперпозиции, по-видимому, невозможны. Трудность эта является результатом свойственной процедуре R «скользкости» (с точки зрения наблюдателя), которая не дает нам обнаружить, когда именно она «происходит» — из-за этого, в частности, многие физики вообще не считают редукцию реальным феноменом. Судя по имеющимся данным, результат эксперимента никак не зависит от того, на каком уровне выполняется процедура R — необходимо лишь, чтобы этот уровень был выше, чем тот, на котором наблюдались эффекты квантовой интерференции, но ниже, чем тот, на котором мы можем непосредственно воспринимать вместо комплексных линейных суперпозиций реализовавшиеся благодаря редукции классические альтернативы (хотя, как мы вскоре увидим, некоторые физики полагают, что и на этом этапе суперпозиции сохраняются).

Как можно установить, на каком уровне действительно происходит редукция — если она, конечно, вообще происходит в физическом смысле? Какой физический эксперимент необходимо поставить для того, чтобы отыскать ответ на этот вопрос? Если R физический процесс, то он может происходить на любом уровне из огромного множества возможных между микроскопическими уровнями наблюдаемой квантовой интерференции и макроскопическими уровнями классического непосредственного восприятия. Более того, эти различия в «уровнях», похоже, не связаны напрямую с физическими размерами — квантовая сцепленность, например (см. §5.4), с легкостью «растягивается» до нескольких метров. Мы вскоре покажем, что более подходящей, нежели физические размеры, мерой является в данном случае, разность энергий. Как бы то ни было, на нашей, «макроскопической», стороне процесса то место, где «остановится шарик», определяется исключительно нашим же сознательным восприятием. С точки зрения физической теории это весьма неудобно, так как нам доподлинно не известно, какие именно физические процессы в мозге отвечают за восприятие. Тем не менее, сама физическая природа этих процессов, похоже, дает для любой теории реальной редукции R макроскопический предел. Впрочем, и здесь диапазон возможных вариантов между двумя крайностями чрезвычайно велик, что способствует формированию самых разнообразных позиций в отношении того, что же на самом деле происходит в тот момент, когда на сцену выходит процедура R.

Одним из важнейших является вопрос о «реальности» квантового формализма — или даже квантового мира вообще. Не могу удержаться и не процитировать в этой связи одно замечание профессора Чикагского университета Боба Уолда. Несколько лет назад на одном из банкетов он сказал мне:

 

«Если вы и вправду верите в квантовую механику, значит, всерьез вы ее не принимаете».

 

Мне кажется, что в этом замечании содержится некая глубокая истина как о самой квантовой теории, так и об отношении к ней людей. Те из адептов теории, кто особенно яростно отрицает необходимость какой бы то ни было ее модификации, не склонны полагать, что она описывает действительное поведение «реального» квантового мира. Нильс Бор, один из создателей и выдающийся интерпретатор квантовой теории, придерживался в этом отношении наиболее непримиримой позиции. Вектор состояния он, судя по всему, считал не более чем удобной условностью, полезной лишь для вычисления вероятностей результатов допускаемых системой «измерений». Сам по себе вектор состояния и не должен давать объективного описания той или иной квантовой реальности, он призван лишь олицетворять «наше знание» о системе. В самом деле, разве можно всерьез полагать, будто понятие «реальность» осмысленно применимо к происходящим на квантовом уровне процессам? Бор, несомненно, принадлежал к тем, кто «и вправду верит в квантовую механику», и, на его взгляд, вектор состояния как раз и не следовало «принимать всерьез» в качестве средства описания физической реальности на квантовом уровне.

Общая альтернатива этой квантовомеханической точке зрения заключается в предположении, что вектор состояния дает-таки строгое математическое описание реального квантового мира — мира, эволюционирующего по чрезвычайно точным законам, хотя, возможно, и не в полном соответствии с математическими правилами, задаваемыми уравнениями квантовой теории. Отсюда, как мне представляется, открываются два основных пути. Одни ученые полагают, что процедура U исчерпывающе описывает все, что связано с эволюцией квантового состояния. Процедура же R , соответственно, рассматривается как своего рода иллюзия, условность или аппроксимация, но ни в коем случае не как часть действительной эволюции реальности, описываемой квантовым состоянием. Такое мнение, на мой взгляд, ведет в направлении так называемой концепции множественности миров, или интерпретации Эверетта 73. Об этой концепции мы поподробнее поговорим буквально через минуту. Другие — как раз те, кто принимает квантовый формализм в наибольшей степени «всерьез», — уверены, что обе процедуры, как U , так и R , представляют (с достаточно большой степенью точности) действительное физическое поведение физически реального, описываемого вектором состояния, квантового/классического мира. Однако если принимать квантовый формализм настолько всерьез, становится очень нелегко искренне верить в то, что существующая квантовая теория целиком и полностью верна на всех уровнях. Взять хотя бы то, что процедура R , в ее теперешнем определении, противоречит многим свойствам процедуры U , в частности, линейности последней. В этом смысле, разумеется, продолжать и далее «вправду верить в квантовую механику» невозможно. В последующих параграфах мы обсудим упомянутые точки зрения более основательно.

 

О множественности миров

 

Попробуем для начала выяснить, насколько далеко мы сможем уйти, следуя первым из «реалистических» путей — тому, что ведет в конечном счете к представлению о существовании «множественных» миров. За истинное описание реальности здесь принимается вектор состояния, эволюционирующий исключительно под действием процедуры U. Отсюда неизбежно следует, что законам квантовой линейной суперпозиции должны подчиняться и объекты классического уровня (такие, как бильярдные шары или даже люди). Можно предположить, что никаких серьезных проблем в связи с этим возникнуть не должно, поскольку такие суперпозиции состояний на классическом уровне — явление чрезвычайно редкое, и это еще слабо сказано. Проблема, однако, есть и связана она с линейностью эволюции U. Под действием U весовые коэффициенты состояний в суперпозиции всегда остаются одинаковыми, вне зависимости от того, какое количество вещества участвует в процессе. Сама по себе процедура U не способна, если можно так выразиться, «разделить» суперпозицию состояний только потому, что система выросла в размерах или усложнилась. Суперпозиции при этом отнюдь не проявляют тенденции к «исчезновению» при переходе на классический уровень, в результате чего выраженные суперпозиции состояний классических объектов должны стать не менее распространенным феноменом, нежели суперпозиции квантовых состояний. Отсюда неизбежно следует вопрос: почему в таком случае мы, воспринимая мир классических объектов, не сталкиваемся с такими макроскопическими суперпозициями альтернативных состояний ежедневно?

У приверженцев концепции множественности миров имеется на этот счет объяснение. Попробуем в нем разобраться. Представим себе ситуацию, подобную той, что мы рассматривали в §5.17, — детектор фотонов, описываемый состоянием | Ψ 〉, оказывается на пути фотона, находящегося в суперпозиции состояний |α 〉 + |β 〉, причем |α 〉 активирует детектор, |β 〉 же оставляет все как есть. (Возможно, фотон, испущенный некоторым источником, успел по пути встретиться с полупрозрачным зеркалом, и состояния |α 〉 и |β 〉 описывают, соответственно, пропущенную и отраженную части общего состояния фотона.) Мы здесь не говорим о применимости концепции вектора состояния к объектам классического уровня (весь детектор целиком), так как в рамках данной точки зрения векторы состояния являются точными представлениями реальности на всех ее уровнях. Таким образом, состояние | Ψ 〉 может описывать весь детектор целиком, а не только лишь некоторые квантовые его элементы, первыми встречающие фотон, как было в §5.17. Отметим, что, как и в §5.17, после собственно момента столкновения состояния детектора и фотона эволюционируют из произведения | Ψ 〉 (|α 〉 + |β 〉 ) в сцепленное состояние

 

| Ψ Д 〉 + | Ψ Н 〉 |β '〉.

 

Реальность описывается теперь вот этим вот сцепленным состоянием, рассматриваемым как единое целое. Мы не говорим: «либо детектор зарегистрировал и поглотил фотон (состояние | Ψ Д 〉 ), либо детектор фотона не зарегистрировал, и фотон остался свободным (состояние | Ψ Н 〉 |β '〉 )». Вместо этого мы говорим: «обе альтернативы сосуществуют в суперпозиции, как часть всеобщей реальности, в которой все такие суперпозиции сохраняются». Можно распространить ситуацию и вообразить себе экспериментатора-человека, который разглядывает детектор с целью выяснить, зарегистрировал ли тот прибытие фотона. Прежде чем обратить свой взор к детектору, человек также должен был пребывать в некотором квантовом состоянии, скажем, | Σ 〉; таким образом, мы получаем на данном этапе следующее совокупное «произведение» состояний:

 

| Σ 〉 (| Ψ Д 〉 + | Ψ Н 〉 |β '〉 ).

 

Далее, изучив состояние детектора, наблюдатель каким-то образом воспринимает, что либо детектор зарегистрировал и поглотил фотон (состояние | Σ Д 〉 ), либо детектор фотона не зарегистрировал (ортогональное состояние | Σ Н 〉 )- Если допустить, что наблюдатель не взаимодействует с детектором после наблюдения, то ситуация описывается следующим вектором состояния:

 

| Σ Д 〉 | Ψ ' Д 〉 + | Σ Н 〉 | Ψ ' Н 〉 |β ''〉.

 

То есть теперь у нас имеется два различных (ортогональных) состояния наблюдателя, каждое из которых вносит свой вклад в общее состояние системы. Согласно первому, наблюдатель находится в состоянии восприятия регистрации детектором прибытия фотона; это состояние сопровождается состоянием детектора, при котором фотон действительно регистрируется. Согласно же второму, наблюдатель находится в состоянии восприятия отсутствия регистрации детектором прибытия фотона; это состояние сопровождается состоянием детектора, при котором фотон не регистрируется, и состоянием фотона, свободно улетающего прочь. При этом, в соответствии с концепцией множественности миров, в рамках одного общего состояния сосуществуют различные экземпляры (варианты, копии) «Я» наблюдателя, располагающие различным опытом восприятия окружающего мира. Действительное состояние мира, окружающего каждый экземпляр, будет соответствовать опыту восприятия, которым этот экземпляр располагает.

Это представление можно обобщить на более «реалистичные» физические ситуации, где одновременно сосуществуют уже не два возможных варианта развития событий, как в приведенном примере, а огромные количества различных квантовых альтернатив, непрерывно возникающих на протяжении всей истории Вселенной. Таким образом, общее состояние Вселенной действительно объединяет в себе множество различных «миров», а любой наблюдатель-человек существует во множестве различных экземпляров сразу. Каждый экземпляр воспринимает тот мир, который не противоречит его собственному опыту восприятия, при этом нас с вами хотят убедить в том, что для построения удовлетворительной теории ничего больше и не нужно. Процедура R , согласно такой точке зрения, оказывается иллюзией, возникающей как следствие некоторых особенностей восприятия квантовосцепленного мира макроскопическим наблюдателем.

Что касается меня, то должен сказать, что я вообще не нахожу эту точку зрения сколько-нибудь удовлетворительной. И дело здесь не столько в исключительной расточительности такой картины мира — хотя это и само по себе уже достаточно подозрительно, если не сказать больше. Более серьезное возражение состоит в том, что концепция множественности миров не дает настоящего решения «проблемы измерения», т.е. не достигает цели, ради которой была создана.

Решить проблему квантового измерения — значит понять, каким образом макроскопическое поведение в U -эволюционирующих квантовых системах порождает (или эффективно порождает) в качестве своего свойства процедуру R. Эта проблема не решается простым указанием на возможный сценарий, предположительно допускающий R -подобное поведение. Необходима теория, позволяющая хоть как-то понять, какие именно обстоятельства вызывают к жизни процедуру R (или, на худой конец, ее иллюзию). Более того, необходимо найти объяснение той замечательной точности, с которой работает процедура R. Судя по всему, люди склонны полагать, что вся точность квантовой теории заключена в ее динамических уравнениях — в эволюции U. Однако и редукция R сама по себе ничуть не менее точна в предсказании вероятностей, и до тех пор, пока мы не поймем, каким образом ей это удается, удовлетворительной теории у нас не будет.

Поскольку ничего большего концепция множественности миров не предлагает, действительного и исчерпывающего объяснения ни одному из этих феноменов мы не получаем. В отсутствие теории, описывающей, каким образом «воспринимающее сознание» разделяет мир на ортогональные альтернативы, у нас нет никаких причин ожидать, что такое сознание не будет способно осознавать линейные суперпозиции совершенно различных состояний теннисных мячей или, скажем, слонов. (Следует отметить, что одна лишь ортогональность «воспринимаемых состояний» — например, состояний | Ψ Д 〉 и | Ψ Н 〉 в приведенном выше примере — никоим образом не помогает эти состояния разделить. Сравните, например, пару состояний | L ← 〉 и | L → 〉 с парой | L ↑ 〉 и | L ↓ 〉, которыми мы пользовались при обсуждении ЭПР-феноменов в §5.17. Обе пары состояний ортогональны, точно так же как ортогональны состояния | Ψ Д 〉 и | Ψ Н 〉, однако выбрать одну пару в ущерб другой мы не можем.) И еще одно: концепция множественности миров никак не объясняет чрезвычайную точность того удивительного правила, которое чудесным образом превращает квадраты модулей комплексных весовых коэффициентов в относительные вероятности74. (См. также §§6.6 и 6.7.)

 

6.3. Не принимая вектор |ψ 〉 всерьез

 

Существует много различных вариантов точки зрения, согласно которой вектор состояния |ψ не следует рассматривать как действительное отображение той или иной физической реальности, существующей на квантовом уровне. Вектор |ψ 〉 вводится лишь в качестве вычислительного приема, удобного исключительно для вычисления вероятностей, либо служит для выражения «состояния знания» экспериментатора о физической системе. Иногда под |ψ 〉 понимается не состояние индивидуальной физической системы, но целый ансамбль возможных подобных физических систем. Часто утверждают, что поведение вектора сложносцепленного состояния |ψ 〉 ничем, с практической точки зрения (for all practical purposes [42], или просто FAPP с легкой руки Джона Белла75), не отличается от поведения такого ансамбля физических систем — а большего о проблеме измерения физикам знать и не нужно. Иногда можно услышать, что вектор |ψ 〉 не может описывать какую бы то ни было квантовую реальность, так как понятие «реальность» к феноменам квантового уровня неприменимо — оно теряет здесь всякий смысл, поскольку реальным является лишь то, что можно «измерить».

Многие (в том числе и я — а также Эйнштейн и Шрёдингер, так что компания подобралась очень даже неплохая), впрочем, убеждены, что ничуть не больше смысла в ограничении «реальности» лишь объектами, которые мы способны воспринять — например, при помощи измерительных устройств (некоторых из них, по крайней мере), — и лишении «права на реальность» объектов, существующих на более глубоком, более фундаментальном уровне. Я не сомневаюсь, что мир на квантовом уровне выглядит странно и непривычно, но он отнюдь не становится от этого «нереальным». В самом деле, разве могут реальные объекты состоять из нереальных компонентов? Более того, управляющие квантовым миром математические закономерности замечательно точны — ничуть не менее точны, нежели более привычные уравнения, описывающие поведение макроскопических объектов, — несмотря на все те туманные образы, с которыми в нашем сознании ассоциируются «квантовые флуктуации» и «принцип неопределенности».

Однако убежденность в том, что хоть какая-то реальность должна существовать и на квантовом уровне, не избавляет нас от сомнений в возможности точно описать эту самую реальность посредством вектора состояния |ψ 〉. В доказательство «нереальности» |ψ 〉 выдвигаются самые различные аргументы. Во-первых, вектор |ψ 〉, по всей видимости, вынужден время от времени претерпевать этот загадочный нелокальный разрывный «скачок», который я обозначаю здесь буквой R. Несколько неподобающее поведение для физически приемлемого описания мира, особенно если учесть, что у нас уже имеется изумительно точное и непрерывное уравнение Шрёдингера U , согласно которому, как предполагается, и эволюционирует вектор |ψ 〉 (большую часть времени). Однако, как мы успели убедиться, эволюция U сама по себе заводит нас в дебри сложностей и неясностей множественно-мировых интерпретаций; если же мы хотим получить картину, сколько-нибудь адекватно описывающую реальную Вселенную, которая, как нам представляется, нас окружает, то нам просто необходима какая-никакая процедура R.

Другое нередко выдвигаемое возражение против реальности вектора |ψ 〉 сводится к следующему: чередование U , R , U , R , U , R , …, представляющее собой, в сущности, типичное описание процесса в квантовой теории, не симметрично во времени (каждое U -действие начинается с процедуры R , но не завершается ею), и существует другое, полностью эквивалентное первому описание, в котором U -эволюции обращены во времени (см. НРК, с. 355, 356; рис. 8.1, 8.2). Почему первое описание соответствует «реальности», а второе нет? Есть мнение, что всерьез следует принимать оба описания (как прямую, так и обратную эволюцию вектора состояния) — они сосуществуют и дают в совокупности полное описание физической реальности (см. [61], [381] и [2]). Я склонен думать, что предположения эти, скорее всего, не лишены серьезных оснований, однако в настоящий момент мы на них останавливаться не будем. Мы вкратце коснемся их (и некоторых других родственных им) ниже, в §7.12.

Одно из наиболее частых возражений против принятия вектора |ψ 〉 всерьез в качестве описания реальных процессов состоит в том, что его нельзя непосредственно «измерить» — в том смысле, что не существует экспериментального способа определить вектор состояния (пусть и с точностью до коэффициента пропорциональности), если мы об этом состоянии ничего не знаем. Возьмем для примера атом со спином 1/2. Вспомним (§5.10, рис. 5.19), что каждое возможное состояние спина такого атома характеризуется каким-то конкретным направлением в обычном пространстве. Однако если мы не имеем ни малейшего понятия, что это за направление, определить его мы никак не сможем. Мы можем лишь выбрать какое-либо одно направление и выяснить, в этом направлении ориентирована ось спина ( ДА ) или же в противоположном ( НЕТ ). Каким бы ни было начальное состояние спина, соответствующее направление в гильбертовом пространстве проецируется либо в ДА -пространство, либо в НЕТ -пространство; каждый исход реализуется с вполне определенной вероятностью. И тут мы теряем большую часть информации о том, каким было «действительное» начальное состояние спина. Все, что мы можем получить из измерения направления спина (в случае атома со спином 1/2), укладывается в один бит информации (ответ на общий вопрос — ДА или НЕТ ), тогда как возможные состояния направления оси спина образуют континуум, для точного определения которого потребуется бесконечное количество битов информации.

Все это так, и все же противоположную позицию принять ничуть не легче — ту, согласно которой вектор состояния |ψ 〉 оказывается в некотором роде физически «нереальным», являя собой лишь оболочку, содержащую полную сумму «наших знаний» о физической системе. Я бы даже сказал, что принять эту позицию неимоверно трудно, особенно если учесть, что подобная роль «знания» подразумевает немалую долю субъективности. О чьем, в конце концов, знании идет здесь речь? Совершенно точно — не о моем. Я очень мало действительно знаю об отдельных векторах состояния, детально описывающих поведение всех до единого окружающих меня объектов. А они, как ни в чем не бывало, продолжают себе свою идеально организованную деятельность, нимало не заботясь ни о том, что именно может стать кому-то «известно» о том или ином векторе состояния, ни о том, кто же станет счастливым обладателем этого драгоценного знания. Разве разные экспериментаторы, располагающие разным знанием о какой-либо физической системе, описывают эту самую систему с помощью различных векторов состояния? Отнюдь; все возникающие здесь различия относятся к тем особенностям каждого конкретного эксперимента, которые не оказывают сколько-нибудь существенного влияния на конечный результат.

Один из наиболее сильных доводов76 в опровержение этой субъективной точки зрения на реальность |ψ 〉 следует из того факта, что, каким бы ни был вектор состояния |ψ 〉, всегда возможно (по крайней мере, в принципе) осуществить примитивное измерение (см. §5.13), ДА -пространство которого представляет собой луч в гильбертовом пространстве, определяемый вектором |ψ 〉. Дело в том, что физическое состояние |ψ 〉 (определяемое лучом комплексных кратных |ψ 〉 ) определено однозначно, в силу того, что результат ДА для данного состояния является абсолютно достоверным. Никакое другое состояние таким свойством не обладает. Для любого другого состояния речь может идти лишь о некоторой вероятности (всегда меньшей, нежели полная уверенность) получения результата ДА , не исключающей и возможности того, что будет получен результат НЕТ. Таким образом, хотя мы и не можем посредством какого бы то ни было измерения выяснить, что же такое в действительности представляет собой вектор |ψ 〉, физическое состояние |ψ 〉 однозначно определяется тем, что должно (согласно соответствующему вектору) являться результатом измерения, которое могло бы быть осуществлено над этим состоянием. Здесь мы вновь встречаемся с контрфактуальностью (см. §§5.2, 5.3); впрочем, мы уже видели, насколько важную роль в предсказаниях квантовой теории играют контрфактуальные соображения.

Дабы прибавить нашему рассуждению убедительности, вообразим, что квантовая система установлена в некое известное состояние, скажем, |φ 〉, и что согласно вычислениям, это состояние по прошествии времени t эволюционирует под действием процедуры U в другое состояние, скажем, |ψ 〉. Пусть состояние |φ 〉 представляет, например, состояние «спин вверх» (|φ 〉 = |↑ 〉 ) атома со спином 1/2, и предположим, что система оказалась в этом состоянии под действием какого-то предыдущего измерения. Допустим, что наш атом обладает магнитным моментом, направление которого совпадает с направлением оси спина (т.е. представляет собой маленький магнит, ориентированный в направлении оси спина). Направление же оси спина атома, помещенного в магнитное поле, вполне определенным образом прецессирует, что можно точно вычислить и представить как действие процедуры U , переводящее спин за время t в новое состояние, скажем, |ψ 〉 = |→ 〉. Следует ли это вычисленное состояние принимать всерьез как часть физической реальности? Не вижу причин в этом ему отказывать. Поскольку состояние |ψ 〉 никак не может не учитывать возможность того, что нам вдруг взбредет в голову измерить его посредством вышеупомянутого примитивного измерения, того самого измерения, ДА -пространство которого состоит исключительно из кратных вектора |ψ 〉. В данном случае таким измерением является измерение спина в направлении →. На это измерение система должна давать уверенный ответ ДА , а этого не может гарантировать никакое состояние спина атома, кроме |ψ 〉 = |→ 〉.

Можно отыскать множество самых разнообразных физических ситуаций, в которых подобное примитивное измерение окажется практически неосуществимым. И все же стандартные правила квантовой теории предполагают, что в принципе такие измерения возможны. Если же мы полагаем, что в случае некоторых «достаточно сложных» разновидностей состояний |ψ 〉 примитивные измерения невозможны в принципе, то нам придется пересмотреть самые основы квантовой теории. Может быть, их и впрямь стоит пересмотреть (некоторые конкретные шаги в этом направлении я предложу в §6.12). Следует, впрочем, понимать, какого рода пересмотр потребуется, если мы и впредь намерены отрицать объективные различия между разными квантовыми состояниями или, что одно и то же, объективную реальность вектора состояния |ψ 〉 в некотором строгом физическом смысле (пусть и с точностью до коэффициента пропорциональности).

В качестве «минимального» пересмотра, затрагивающего лишь теорию измерения, часто предлагают ввести так называемые правила суперселекции 77, которые и в самом деле эффективно отрицают возможность выполнения определенных типов примитивных измерений системы. Мне не хочется рассматривать здесь эти правила в подробностях, так как ни одно подобное предложение, насколько мне известно, не дошло в своем развитии до той стадии, на которой можно было бы говорить о формировании сколько-нибудь связной общей позиции в отношении проблемы измерения. Подчеркну лишь, что даже минимальный пересмотр подобного рода все равно остается пересмотром — и лишь подтверждает наличие насущной необходимости в пересмотре теории в целом.

В заключение, думаю, следует упомянуть о том, что существует и множество иных подходов к квантовой механике, которые хоть и не противоречат предсказаниям традиционной теории в принципе, но все же дают «картины реальности», так или иначе отличные от той реальности, где вектор состояния |ψ 〉 «принимают всерьез», полагая, что он эту реальность и представляет. Среди них — пилотно-волновая теория Луи де Бройля [77] и Дэвида Бома [33], нелокальная теория, согласно которой существуют объекты, эквивалентные одновременно волновым функциям и системам классических частиц, причем и те, и другие полагаются в данной теории «реальными». (См. также [34].) Другие точки зрения (вдохновленные Ричардом Фейнманом и его подходом к квантовой теории [118]) оперируют целыми «историями» возможного поведения — согласно этим точкам зрения, истинная картина «физической реальности» несколько отличается от той, которую дает обыкновенный вектор состояния |ψ 〉. Аналогичной общей позиции, которая, впрочем, учитывает еще и возможность, по сути, многократных частичных измерений (в соответствии с анализом, предпринятым в [4]), придерживаются авторы работ [174], [279] и [141]. Было бы неуместно, как мне кажется, углубляться здесь в обсуждение этих разнообразных альтернативных точек зрения (хотя следует все же упомянуть о том, что формализм матриц плотности, который вводится в следующем параграфе, играет в некоторых из этих теоретических построений не последнюю роль — как и в операторном подходе Хаага [179]). Скажу лишь, что, хотя многое в этих процедурах представляет значительный интерес и обладает некоторой вдохновляющей оригинальностью, я все же совершенно не убежден, что с их помощью можно действительно решить проблему измерения. Разумеется, я могу и ошибаться, но это покажет лишь время.

 

Матрица плотности

 

Многие физики, полагая себя людьми практичными, вопросами «реальности» вектора |ψ 〉 не интересуются. От |ψ 〉 им нужно лишь одно — возможность вычислять с его помощью вероятности того или иного дальнейшего физического поведения объекта. Часто бывает так, что состояние, выбранное изначально для представления физической ситуации, приобретает под действием эволюции чрезвычайную сложность, а его сцепленности с элементами окружения становятся настолько запутанными, что на практике совершенно невозможно проследить за эффектами квантовой интерференции, отличающими такое состояние от множества других ему подобных. Все уверения в том, что явившийся результатом данной конкретной эволюции вектор состояния сколько-нибудь более реален, нежели прочие, на практике от него неотличимые, наши «практичные» физики, без сомнения, сочтут абсолютно лишенными смысла. В самом деле, скажут они, любой отдельный вектор состояния, пригодный для описания «реальности», всегда можно заменить подходящей вероятностной комбинацией векторов состояния. Если применение процедуры U к некоему вектору состояния, представляющему начальное состояние системы, дает результат, с практической точки зрения (FAPP-подход Белла) неотличимый от того, что был бы получен с помощью такой вот вероятностной комбинации векторов состояния, то вероятностная комбинация достаточно хороша для описания мира и отыскивать U -эволюционировавший вектор состояния нужды нет.

Часто утверждают, что с такими же мерками можно подходить и к процедуре R — по крайней мере, на практике (все тот же FAPP). Двумя параграфами ниже мы попытаемся найти ответ на вопрос, можно ли в самом деле разрешить кажущийся U / R -парадокс одними лишь этими методами. Однако прежде я хотел бы рассказать подробнее о процедурах, принятых в стандартных FAPP-подходах к объяснению R -процесса (реального или кажущегося).

Ключевым в этих процедурах является математический объект, называемый матрицей плотности. Понятие матрицы плотности играет в квантовой теории весьма важную роль, и именно она, а не вектор состояния, лежит в основе большинства стандартных математических описаний процесса измерения. Центральную роль отводит матрице плотности и мой, менее традиционный, подход, особенно в том, что касается ее связи со стандартными FAPP-процедурами. По этой причине нам, к сожалению, придется углубиться в математический формализм квантовой теории несколько далее, нежели было необходимо прежде. Надеюсь, что читателя-неспециалиста такая перспектива не отпугнет. Даже при отсутствии полного понимания, мне думается, любому читателю будет полезно хотя бы бегло просматривать математические рассуждения по мере их появления — несомненно, со временем придет и осмысление. Это стало бы существенным подспорьем для понимания некоторых из дальнейших аргументов и тонкостей, сопровождающих поиски ответа на вопрос, почему нам действительно и насущно необходима усовершенствованная теория квантовой механики.

В отличие от отдельного единичного вектора состояния, матрицу плотности можно рассматривать как представление комбинации вероятностей нескольких возможных альтернативных векторов состояния. Говоря о «комбинации вероятностей», мы подразумеваем лишь, что существует некоторая неопределенность в отношении действительного состояния системы, при этом каждому из возможных альтернативных векторов состояния поставлена в соответствие некоторая вероятность — самая обычная классическая вероятность, выраженная самым обычным вещественным числом. Однако матрица плотности вносит в это описание некоторую путаницу (заложенную изначально), поскольку не отличает классические вероятности, фигурирующие в вышеупомянутой взвешенной вероятностной комбинации, от вероятностей квантовомеханических, возникающих в результате процедуры R. Дело в том, что операционными методами различить эти вероятности невозможно, поэтому в операционном же смысле вполне уместным представляется математическое описание (матрица плотности), которое такого различия не делает.

Как выглядит это математическое описание? Я не стану углубляться в ненужные здесь подробности, лишь вкратце изложу основные концепции. Идея матрицы плотности, вообще говоря, весьма изящна[43]. Начать с того, что вместо каждого отдельного состояния |ψ 〉 мы используем объект вида

 

|ψ 〉 〈 ψ |.

 

Что означает такая запись? Не прибегая к точному математическому определению, которое для нас сейчас несущественно, можно сказать, что это выражение представляет собой особого рода «произведение» (точнее, вид тензорного произведения, см. §5.15) вектора состояния |ψ 〉 и «комплексно сопряженного» ему вектора 〈 ψ |. Вектор состояния |ψ 〉 мы полагаем нормированным (т.е. 〈 ψ |ψ 〉 = 1); тогда выражение |ψ 〉 〈 ψ | однозначно определяется физическим состоянием, представленным вектором |ψ 〉 (поскольку не зависит от изменений фазового множителя |ψ 〉 ↣ eiθ |ψ 〉, см. §5.10). В системе обозначений Дирака исходный вектор |ψ 〉 называется «кет»-вектором, а соответствующий ему 〈 ψ | — «бра»-вектором. Бра-вектор 〈 ψ | и кет-вектор |φ 〉 могут образовывать и скалярное произведение («bra-ket»[44]):

 

ψ |φ 〉,

 

с таким обозначением мы уже встречались в §5.12. Значением скалярного произведения является самое обычное комплексное число, тогда как тензорное произведение |ψ 〉 〈 φ | в матрице плотности дает более сложный математический «объект» — элемент некоторого векторного пространства.

Перейти от непонятного «объекта» к обычному комплексному числу позволяет особая математическая операция, называемая вычислением следа (или суммы элементов главной диагонали ) матрицы. Для простого выражения |ψ 〉 〈 φ | эта операция сводится к простой перестановке членов, дающей в результате скалярное произведение:

 

СЛЕД(|ψ 〉 〈 φ |) = 〈 φ |ψ 〉.

 

В случае суммы членов «след» вычисляется линейно: например,

 

СЛЕД (z |ψ 〉 〈 φ | + w |α 〉 〈 β |) = zφ |ψ 〉 + wβ |α 〉.

 

Я не стану в подробностях выводить все математические свойства таких объектов, как 〈 ψ | и |ψ 〉 〈 φ |, однако кое о чем упомянуть стоит. Во-первых, произведение |ψ 〉 〈 φ | подчиняется тем же алгебраическим правилам, что перечислены в §5.15 для произведения 〉 (за исключением последнего, которое к данному случаю неприменимо):

 

(z|ψ 〉 )〈 φ | = z ( 〉 〈 φ |) = 〉 (zφ |),

( 〉 + 〉 )〈 φ | = 〉 〈 φ | + 〉 〈 φ |,

〉 (〈 φ | + 〈 χ | ) = 〉 〈 φ | + 〉 〈 χ |.

 

Следует также отметить, что бра-вектор z '〈 ψ | является комплексным сопряженным кет-вектора z|ψ 〉 (поскольку число z ' есть комплексное сопряженное комплексного числа z, см. §5.8), а сумма 〈 ψ | + 〈 χ | — комплексным сопряженным суммы 〉 + 〉.

Допустим, нам нужно составить матрицу плотности, представляющую некоторую комбинацию вероятностей нормированных состояний, скажем, |α 〉 и |β 〉; вероятности, соответственно, равны a и b. Правильная матрица плотности в данном случае будет иметь вид

 

D   = a |α 〉 〈 α | + b |β 〉 〈 β |.

 

Для трех нормированных состояний |α 〉, |β 〉, |γ 〉 с соответствующими вероятностями a, b, c имеем

 

D   = a |α 〉 〈 α | + b |β 〉 〈 β | + c |γ 〉 〈 γ |,

 

и так далее. Из того, что вероятности всех альтернативных вариантов должны в сумме давать единицу, можно вывести важное свойство, справедливое для любой матрицы плотности:

 

СЛЕД( D  ) = 1.

 

Как же использовать матрицу плотности для вычисления вероятностей, результатов измерения? Рассмотрим сначала простой случай примитивного измерения. Спросим, находится ли система в физическом состоянии 〉 ( ДА ) или в ином состоянии, ортогональном 〉 ( НЕТ ). Само измерение представляет собой математический объект (так называемый проектор), очень похожий на матрицу плотности:

 

E   = 〉 〈 ψ |.

 

Вероятность p получения ответа ДА определяется из выражения

 

p = СЛЕД( DE  ),

 

где произведение DE само представляет собой объект, подобный матрице плотности. Оно вычисляется с помощью несложных алгебраических правил, необходимо лишь соблюдать порядок «умножений». Например, для вышеприведенной двучленной суммы D   = a |α 〉 〈 α | + b |β 〉 〈 β | имеем

 

DE = (a |α 〉 〈 α | + b |β 〉 〈 β |) 〉 〈 ψ | = a |α 〉 〈 α |ψ 〉 〈 ψ | + b |β 〉 〈 β |ψ 〉 〈 ψ | = (aα |ψ 〉 )|α 〉 〈 ψ | + (bβ |ψ 〉 )|β 〉 〈 ψ |.

 

Члены 〈 α |ψ 〉 и 〈 β |ψ 〉 могут «коммутировать» с другими выражениями, так как они представляют собой просто числа, порядок же таких «объектов», как |α 〉 и 〈 ψ | необходимо тщательно соблюдать. Далее получаем (учитывая, что zz ' = |z 2|, см. §5.8)

 

СЛЕД( DE  ) = (aα |ψ 〉 )〈 ψ |α 〉 + (bβ |ψ 〉 )〈 ψ |β 〉 = a|α |ψ 〉 |2 + b|β |ψ 〉 |2.

 

Напомню (см. §5.13), что величины |α |ψ 〉 |2 и |β |ψ 〉 |2 представляют собой квантовые вероятности соответствующих конечных состояний 〉 и 〉, тогда как a и b суть классические вклады в полную вероятность. Таким образом, в окончательном выражении квантовые и классические вероятности оказываются смешаны.

В случае более общего измерения типа «да/нет» рассуждение в целом не изменяется, только вместо определенного выше проектора «£ » используется проектор более общего вида

 

E   = 〉 〈 ψ | + 〉 〈 φ | + … + 〉 〈 χ |,

 

где 〉, 〉, …, 〉 — взаимно ортогональные нормированные состояния, заполняющие пространство ДА -состояний в гильбертовом пространстве. Как мы видим, проекторы обладают общим свойством

 

E  2 = E  .

 

Вероятность получения ответа ДА при измерении, определяемом проектором E  , системы с матрицей плотности D   равна следу ( DE  ) — в точности, как и в предыдущем примере.

Отметим важный факт: искомую вероятность можно вычислить, если нам всего-навсего известны матрица плотности и проектор, описывающий измерение. Нам не нужно знать, каким именно образом из индивидуальных состояний была составлена матрица плотности. Полная вероятность получается сама собой в виде соответствующей комбинации классических и квантовых вероятностей, а нам не приходится беспокоиться, какая ее часть откуда взялась.

Рассмотрим повнимательнее это любопытное переплетение классических и квантовых вероятностей в матрице плотности. Допустим, например, что у нас имеется частица со спином 1/2, и мы абсолютно не уверены, в каком спиновом состоянии (нормированном) она в данный момент пребывает — |↑ 〉 или |↓ 〉. Предположив, что соответствующие вероятности этих состояний равны 1/2 и 1/2, построим матрицу плотности

 

D = 1/2 | ↑ 〉 〈 ↑ |  + 1/2 | ↓ 〉 〈 ↓ |.

 

Простое вычисление показывает, что в точности такая же матрица плотности D   получается в случае комбинации равных вероятностей (1/2 и 1/2) любых других ортогональных возможностей — скажем, состояний (нормированных) |→ 〉 и |← 〉, где |→ 〉 = (| ↑ 〉 + | ↓ 〉 )/√ 2 = (| ↑ 〉 - | ↓ 〉 )/√ 2:

 

D = 1/2 | → 〉 〈 → | + 1/2 | ← 〉 〈 ← |.

 

Допустим, мы решили измерять спин частицы в направлении «вверх», т.е. соответствующий проектор имеет вид

 

E   = | ↑ 〉 〈 ↓ |.

 

Тогда для вероятности получения ответа ДА , согласно первому описанию, находим

 

СЛЕД( DE  ) = 1/2 | 〈 ↑ | ↑ 〉 |2 + 1/2 | 〈 ↓ |↑ 〉 |2 = 1/2 × 12 + 1/2 × 02 = 1/2,

 

где мы полагаем 〈 ↑ | ↑ 〉 = 1 и 〈 ↓ |↑ 〉 = 0 (поскольку состояния нормированы и ортогональны). Согласно второму описанию, находим

 

СЛЕД( DE  ) = 1/2 | 〈 → | ↑ 〉 |2 + 1/2 | 〈 ← |↑ 〉 |2 = 1/2 × (1/√ 2)2 + 1/2 × (1/√ 2)2 = 1/4 + 1/4 = 1/2;

 

правое |→ 〉 и левое |← 〉 состояния здесь не являются ни ортогональными, ни параллельными измеряемому состоянию | ↑ 〉, т.е. на деле |〈 → | ↑ 〉 | = | 〈 ← |↑ 〉 | = 1/√ 2.

Хотя полученные вероятности оказываются одинаковыми (как, собственно, и должно быть, поскольку одинаковы матрицы плотности), физические интерпретации этих двух описаний совершенно различны. Мы согласны с тем, что физическая «реальность» любой ситуации описывается некоторым вполне определенным вектором состояния, однако существует классическая неопределенность в отношении того, каким окажется этот вектор в действительности. В первом предложенном описании атом находится либо в состоянии | ↑ 〉, либо в состоянии | ↓ 〉, и мы не знаем, в каком из двух. Во втором описании — либо в состоянии |→ 〉, либо в состоянии |← 〉, и мы снова не знаем, в каком именно. Когда мы в первом случае выполняем измерение с целью выяснить, не находится ли атом в состоянии | ↑ 〉, мы имеем дело с самыми обычными классическими вероятностями: вероятность того, что атом находится в состоянии | ↑ 〉, совершенно очевидно равна 1/2, и больше тут говорить не о чем. Когда мы задаем тот же вопрос во втором случае, измерению подвергается уже комбинация вероятностей состояний |→ 〉 и |← 〉, и каждое из них вносит в полную вероятность свой классический вклад 1/2 помноженный на свои же квантовомеханический вклад 1/2, что дает в итоге 1/4 + 1/4 = 1/2. Как можно видеть, матрица плотности ухитряется сосчитать нам верную вероятность вне зависимости оттого, какие классические и квантовомеханические доли эту вероятность, по нашему предположению, составляют.

Приведенный выше пример является в некотором роде особым, поскольку так называемые «собственные значения» матрицы плотности в этом случае оказываются вырожденными (в силу того, что обе классические вероятности здесь — 1/2 и 1/2 — одинаковы); именно эта «особость» и позволяет нам составить более одного описания в комбинациях вероятностей ортогональных альтернатив. Впрочем, для наших рассуждений это ограничение несущественно. (А упомянул я о нем исключительно для того, чтобы избежать упреков в невежестве со стороны возможно читающих эти строки специалистов.) Всегда можно представить, что комбинация вероятностей охватывает гораздо большее число состояний, нежели просто набор взаимно ортогональных альтернатив. Например, в вышеописанной ситуации мы вполне могли бы составить очень сложные вероятностные комбинации множества возможных различных направлений оси спина. Иначе говоря, существует огромное количество совершенно различных способов представить одну и ту же матрицу плотности в виде комбинации вероятностей альтернативных состояний, и это верно для любых матриц плотности, а не только для тех, собственные значения которых вырожденны.

 


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 225; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.155 с.)
Главная | Случайная страница | Обратная связь