Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Определение удельного теплового потока



Содержание

Введение

1. Определение удельного теплового потока

1.1 Выбор температуры газовой стенки

1.2 Определение конвективного удельного теплового потока

1.2.1 Расчет теплоемкости и вязкости газового потока

1.2.2 Нахождение значения коэффициента теплоотдачи от газа к стенке

1.2.3 Определение конвективного удельного теплового потока в стенку

1.3 Определение лучистого и суммарного удельных тепловых потоков

1.3.1 Определение степени черноты продуктов сгорания

1.3.2 Определение удельного лучистого теплового потока

1.3.3 Определение суммарного теплового потока

2. Определение подогрева охладителя

2.1 Определение температуры выхода охладителя

2.2 Определение подогрева охладителя и средней температуры охладителя на каждом участке

3. Определение коэффициента теплоотдачи от стенки к охладителю и температуры «жидкостной стенки»

3.1 Определение температуры «жидкостной стенки»

3.2 Определение коэффициента теплоотдачи от жидкостной стенки к охладителю

3.3 Оценка погрешности при выборе температуры газовой стенки

4. Расчет мощности насоса

4.1 Определение скорости движения охладителя

4.2 Определение гидросопротивления межрубашечного зазора

4.3 Расчет мощности насоса

Заключение


 

Введение

 

Расчет конвективного охлаждения сводится к определению температурных полей стенки и охлаждающей жидкости по длине канала, а также определению размеров и гидросопротивления межрубашечного зазора и мощности насоса для прокачки охлаждающей жидкости.

Исходными данными являются:

1) массовый расход , кг/c и состав  смеси газов, протекающих через канал;

2) термодинамические параметры смеси: температура , K, и давление  МПа;

3) геометрические размеры и форма канала:

 – диаметр цилиндрической части камеры сгорания, м;

 – диаметр критического сечения сопла, м;

 – диаметр выходной части сопла, м;

 – длина цилиндрической части сопла, м;

4) материал стенки и ее толщина , м;

5) тип охлаждающей жидкости, ее расход  кг/c, давление и температура на входе, , К, , МПа;

6) углы  и  раскрытия сопла;

В результате расчета необходимо определить:

1) величину удельного теплового потока по длине сопла

 

 

2) температурное поле стенки со стороны газа и со стороны жидкости:


 

 

3) скорость движения охлаждающей жидкости в межрубашечном зазоре , м/с; гидравлическое сопротивление межрубашечного зазора , Н/м2, мощность насоса для прокачки охлаждающей жидкости N, Вт.


Определение удельного теплового потока

Выбор температуры газовой стенки

 

Для расчета наружного охлаждения канал разбивается на участки.Схема разбивки канала на 11 участков прилагается в качестве приложения к курсовой работе.

Для каждого из участков выбираем температуру газовой стенки со стороны продуктов сгорания, учитывая свойства материала стенки.

Определение конвективного удельного теплового потока

Расчет теплоемкости и вязкости газового потока

Вычисляем теплоемкость газового потока по формуле (1.1):

 

 (1.1)

 

где Сpi –теплоемкость конкретного газа при заданной температуре смеси, кДж/(кг К);  ri – доля газа в газовом потоке.

Определяем теплоемкость газов, пользуясь данными приложения А [1], применяя метод интерполяции:

 кДж/(кг К);

 кДж/(кг К);

 кДж/(кг К).

Подставляем найденные значения теплоемкостей в формулу (1.1):

 кДж/(кг К).

Находим молекулярную массу смеси по формуле (1.2):


 

 (1.2)

 

где Мi –молекулярная масса конкретного газа, кг/(кмоль);

 ri – доля газа в газовом потоке.

 кг/(кмоль).

Динамическая вязкость определяется по формуле (1.3):

 

, (1.3)

 

где Мi –молекулярная масса смеси, кг/(кмоль);

 - динамическая вязкость конкретного газа, ;

 ri – доля газа в газовом потоке.

Определяем динамическую вязкость газов, пользуясь данными приложения А [1], применяя метод интерполяции:

;

;

.

 

Определение конвективного удельного теплового потока в стенку

Конвективный удельный тепловой поток определяется по формуле:

 

 (1.5)

 

где - коэффициент теплоотдачи для рассчитываемого участка, Вт/м2;

 - температура газовой смеси, К;

 - температура стенки для данного участка, К.

 Вт/м2.

 Вт/м2.

 Вт/м2.

 Вт/м2.

 Вт/м2.

 Вт/м2.

 Вт/м2.

Вт/м2.

 Вт/м2.

 Вт/м2.

 Вт/м2.

 

Определение лучистого и суммарного удельных тепловых потоков

Определение подогрева охладителя

Расчет мощности насоса

Расчет мощности насоса

Мощность насоса N, Вт, необходимая для прокачки жидкости, определяют по формуле (4.8):

 

 (4.8)

 

где  - суммарные потери на гидросопротивление межрубашечного зазора, Па; mf – расход охлаждающей жидкости, кг/с;

 кг/м3 – среднее значение плотности жидкости между входом в канал и выходом;

 - коэффициент полезного действия.

 Вт.


 

Заключение

 

В данной курсовой работе, был проведен расчет конвективного охлаждающего сопла Лаваля. В результате расчета была определена величина теплового потока по длине сопла, равная на выходе 5230845 , в критическом сечении 525161 и на входе 2829790 . А также температурное поле стенки со стороны продукта сгорания для критического сечения составило 1120 К, для выхода 429 К, а на входе 705 К. Скорость движения охлаждающей жидкости составила в критическом сечении 45, 635 м/с, а на входе 18, 693 м/с и на выходе 10, 279 м/с Гидравлическое сопротивление межрубашечного зазора равно  Па. Мощность насоса для прокачивания охлаждающей жидкости составило 50508, 201Вт.

Также из графиков зависимости тепловых потоков и температур по длине сопла, мы можем сделать вывод, что своего максимального значения они достигают в критическом сечении сопла.


Список литературы

1. Методические указания по выполнению курсовой работы по дисциплине " Техническая термодинамика" для студентов специальности 140104 " Промышленная теплоэнергетика" очной форм обучения / В.Ю. Дубанин, С.В. Дахин, Н.Н. Кожухов, А.М. Наумов - Воронеж. ВГТУ: Воронеж, 2004. - 29с.

2. Кириллин В.А., Сычев В.В., Шейндлин А.Е.. Техническая термодинамика: учебник / 4-е изд., перераб. – М.: Энергоатомиздат, 1983. - 416 с.

3. Вукалович М.П., Новиков И.И. Термодинамика: учебное пособие для вузов. – М.: Машиностроение, 1972. – 672 с.

4. Сертифицированный набор программ для вычислений свойств воды и водяного пара, газов и смесей газов " WaterSteamPro" TM 6.0/ Орлов К.А., Александров А. А., Очков В. Ф. – М.: МЭИ, 2005.

5. Техническая термодинамика: учебник для вузов /Под ред.

В.И. Крутова - 2-е изд., перераб. и доп – М.: Высш. школа, 1981. - 439 с., ил.

Содержание

Введение

1. Определение удельного теплового потока

1.1 Выбор температуры газовой стенки

1.2 Определение конвективного удельного теплового потока

1.2.1 Расчет теплоемкости и вязкости газового потока

1.2.2 Нахождение значения коэффициента теплоотдачи от газа к стенке

1.2.3 Определение конвективного удельного теплового потока в стенку

1.3 Определение лучистого и суммарного удельных тепловых потоков

1.3.1 Определение степени черноты продуктов сгорания

1.3.2 Определение удельного лучистого теплового потока

1.3.3 Определение суммарного теплового потока

2. Определение подогрева охладителя

2.1 Определение температуры выхода охладителя

2.2 Определение подогрева охладителя и средней температуры охладителя на каждом участке

3. Определение коэффициента теплоотдачи от стенки к охладителю и температуры «жидкостной стенки»

3.1 Определение температуры «жидкостной стенки»

3.2 Определение коэффициента теплоотдачи от жидкостной стенки к охладителю

3.3 Оценка погрешности при выборе температуры газовой стенки

4. Расчет мощности насоса

4.1 Определение скорости движения охладителя

4.2 Определение гидросопротивления межрубашечного зазора

4.3 Расчет мощности насоса

Заключение


 

Введение

 

Расчет конвективного охлаждения сводится к определению температурных полей стенки и охлаждающей жидкости по длине канала, а также определению размеров и гидросопротивления межрубашечного зазора и мощности насоса для прокачки охлаждающей жидкости.

Исходными данными являются:

1) массовый расход , кг/c и состав  смеси газов, протекающих через канал;

2) термодинамические параметры смеси: температура , K, и давление  МПа;

3) геометрические размеры и форма канала:

 – диаметр цилиндрической части камеры сгорания, м;

 – диаметр критического сечения сопла, м;

 – диаметр выходной части сопла, м;

 – длина цилиндрической части сопла, м;

4) материал стенки и ее толщина , м;

5) тип охлаждающей жидкости, ее расход  кг/c, давление и температура на входе, , К, , МПа;

6) углы  и  раскрытия сопла;

В результате расчета необходимо определить:

1) величину удельного теплового потока по длине сопла

 

 

2) температурное поле стенки со стороны газа и со стороны жидкости:


 

 

3) скорость движения охлаждающей жидкости в межрубашечном зазоре , м/с; гидравлическое сопротивление межрубашечного зазора , Н/м2, мощность насоса для прокачки охлаждающей жидкости N, Вт.


Определение удельного теплового потока


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 100; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.056 с.)
Главная | Случайная страница | Обратная связь