Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Лекция 1. ВВЕДЕНИЕ В АГРОХИМИЮ, ПИТАНИЕ РАСТЕНИЙ



Лекция 1. ВВЕДЕНИЕ В АГРОХИМИЮ, ПИТАНИЕ РАСТЕНИЙ

 

История развития агрохимических знаний и химизация земледелия.

Химический состав растений.

Поступление элементов питания в растение.

Корневое и внекорневое питание растений.

Методы регулирования питания растений.

 

Агрономическая химия, или агрохимия, – наука о взаимодействии растений, почвы и удобрений в процессе выращивания сельскохозяйственных культур, о круговороте веществ в земледелии и использовании удобрений для увеличения урожая, улучшения его качества и повышения плодородия почвы. Современная агрохимия – теоретическая биологическая и химическая дисциплина, имеющая прямую связь с практикой сельскохозяйственного производства.

Агрохимия по праву занимает центральное место среди агрономических дисциплин, так как применение удобрений — эффективное средство развития и совершенствования растениеводства. Значение агрохимии усиливается в связи с тем, что она изучает все воздействия на растения и приемы их выращивания.

Главная задача агрохимии – управление круговоротом и балансом химических элементов в системе почва — растение. Классик отечественной агрохимии академик Д. Н. Прянишников считал задачами агрохимии изучение круговорота веществ в земледелии и выявление тех мер воздействия на химические процессы, протекающие в почве и растении, которые могут повышать урожай или изменять его состав. Применение удобрений — главный способ вмешательства человека в этот круговорот (рис. 1).

 

 

Задача современного агрохимика состоит в определении точных параметров круговорота всех биогенных элементов с учетом зон выращивания и специфики различных сельскохозяйственных растений и их сортов при заданных уровнях продуктивности (рис. 2).

Цель агрономической химии – создание наилучших условий питания растений с учетом знания свойств различных видов и форм удобрений, особенностей их взаимодействия с почвой, определение наиболее эффективных форм, способов, сроков применения удобрений.

Агрохимия играет важную роль в современных технологиях возделывания сельскохозяйственных культур, создании оптимальных уровней всех факторов, участвующих в формировании урожая, в их наиболее благоприятном сочетании. Получение максимального экономически выгодного урожая базируется на использовании лучших сортов, обеспечении необходимых физических и химических свойств почв, комплексном применении средств химизации в период вегетации растений, своевременном и качественном выполнении всех агротехнических работ.

 

Рис. 2. Круговорот веществ

 

Агрохимия как наука развивается чрезвычайно быстро. Это определяется необходимостью постоянно увеличивать продуктивность сельскохозяйственных культур, улучшать технологии их возделывания и соблюдать требования охраны окружающей среды.

Минеральное питание – один из основных регулируемых факторов, используемых для целенаправленного управления ростом и развитием растений с целью создания высокого урожая хорошего качества. Регулирование других факторов роста — света, тепла и влаги – широко применяют в защищенном грунте. Изменять влажность в полевых условиях можно при искусственном орошении и осушении агротехническими приемами. В сельскохозяйственном производстве, как правило, приходится лишь приспосабливаться к определенному уровню солнечной радиации, подбирая соответствующие культуры, сорта и приемы агротехники.

Главная задача земледелия – эффективное использование солнечной энергии для создания органического вещества. Уникальным аппаратом для этого служит растение, содержащее хлорофилл

Наземные растения ежегодно извлекают из атмосферы ориентировочно 20 млрд т углерода в форме С02 (1300 кг на 1 га), а вся совокупность растений, включая морские водоросли, – около 150 млрд т. Только наземные растения ежегодно перерабатывают 4217 кДж космической энергии (свет) в продукты ассимиляции.

Однако коэффициенты использования на создание органического вещества растениями энергии ФАР (фотосинтетическиактивной радиации, X 380-720 нм), составляющей 47-49 % интегральной солнечной радиации, весьма низки. Обычно в посевах коэффициенты использования ФАР не превышают 0, 5-3 %. Максимально возможным для фотосинтеза, идущего при солнечном свете, считается КПД ФАР 28 %. Наиболее интенсивное накопление биомассы – до 700 кг/га в сутки – наблюдается в фитоценозах при хороших условиях освещенности, температуры и водоснабжения, высоком уровне минерального питания и составляет до 14% приходящейся за день на посев энергии ФАР.

Человек не может активно влиять на поток солнечной радиации; трудно изменить и другие необходимые для жизнедеятельности растений факторы. Применение удобрений – эффективное средство повышения урожайности растений и улучшения круговорота веществ в земледелии.

В практике сельскохозяйственного производства более сбалансированное питание растений достигается путем применения удобрений, известкования и гипсования почвы. Из этого следует, что в области теории важнейшая проблема агрохимии – решение вопросов управления продуктивностью растений и качеством получаемой растительной продукции путем обеспечения оптимального уровня минерального питания в течение всей вегетации и в связи с этим разработка методов оперативной диагностики. Сложность решения данной проблемы заключается в необходимости точного учета изменяющихся потребностей растений в элементах питания в период роста, учета наследственных возможностей культивируемых сортов и постоянно изменяющегося комплекса почвенно-климатических факторов жизнеобеспечения растений.

С минеральным питанием растений в условиях недостатка или избытка химических элементов в почве связано много важных эколого-физиологических проблем. Для сбалансированного питания растений в целях получения максимальных сборов высококачественной сельскохозяйственной продукции особенно важен строго дифференцированный подход к применению удобрений с учетом обеспеченности почв доступными формами элементов, других почвенно-климатических факторов, особенностей питания различных сельскохозяйственных культур.

 

Химический состав растений

Растение строит свой организм из определенных химических элементов, находящихся в окружающей среде. Оно состоит из сухого вещества и содержит значительное количество воды. В большинстве вегетативных органов сельск-охозяйственных культур содержание воды составляет 70-95 %, а в семенах – от 5 до 15 %.

Обеспеченность растительных клеток водой во многом определяет скорость и направленность процессов жизнедеятельности в растительном организме. В свою очередь, условия минерального питания, а также условия водоснабжения и биологические особенности растений определяют уровень содержания в них воды. В состав сухого вещества растений входит 90-95 % органических соединений и 5-10 % минеральных солей.

Основные органические вещества представлены в растениях белками и другими азотистыми соединениями, жирами, крахмалом, сахарами, клетчаткой, пектиновыми веществами (табл. 1-3).

Таблица 1 – Средний химический состав урожая сельскохозяйственных растений, % (по Плешкову)

Культура Вода Белки Сырой протеин Жиры Крахмал, сахара и другие углеводы, кроме клетчатки Клетчатка Зола
Пшеница (зерно) 14 14 15 2, 0 65 2, 5 1, 7
Рожь (зерно) 14 12 13 2, 0 68 2, 3 1, 6
Овес (зерно) 13 11 12 4, 2 55 10 3, 5
Ячмень (зерно) 13 9 10 2, 2 65 5, 5 3, 0
Рис (очищенное зерно) 11 7, 0 8, 0 0, 8 78 0, 6 0, 5
Кукуруза (зерно) 15 9 10 4, 7 66 2, 0 1, 5
Гречиха (зерно) 13 9 11 2, 8 62 8, 8 2, 0
Горох (семена) 13 20 23 1, 5 53 5, 4 2, 5
Фасоль (семена) 13 18 20 1, 2 58 4, 0 3, 0
Соя (семена) 11 29 34 16 27 7, 0 3, 5
Подсолнечник (ядра) 8 22 25 50 7, 0 5, 0 3, 5
Лен (семена) 8 23 26 35 16 8, 0 4, 0
Картофель (клубни) 78 1, 3 2, 0 0, 1 17 0, 8 1, 0
Сахарная свекла (корнеплоды) 75 1, 0 1, 6 0, 2 19 1, 4 0, 8
Кормовая свекла (корнеплоды) 87 0, 8 1, 5 0, 1 9, 0 0, 9 0, 9
Морковь (корнеплоды) 86 0, 7 1, 3 0, 2 9, 0 1, 1 0, 9
Лук репчатый 85 2, 5 3, 0 0, 1 8, 0 0, 8 0, 7
Клевер (зеленая масса) 75 3, 0 3, 6 0, 8 10 6, 0 3, 0
Ежа сборная (зеленая масса) 70 2, 1 3, 0 1, 2 10 10, 5 2, 9

Таблица 2 – Средний химический состав семян масличных культур,

% сухой массы

Культура Жиры Белки Клетчатка Другие углеводы Зола
Подсолнечник: целые семена 34 16 25 20 3, 8
ядра 56 26 6 6 3, 8
Лен 37 26 8 22 4, 0
Конопля 34 22 19 20 4, 0

 

Таблица 3 – Среднее содержание основных веществ в овощных, плодовых и ягодных культурах, % сырой массы

Культура Сахара Органические кислоты Азотистые  вещества Клетчатка Зола Аскорбиновая кислота, мг/100 г
Капуста белокочанная 4, 0 о, з 1, 3 0, 8 0, 7 30
Капуста цветная 3, 0 0, 1 2, 5 1, 2 0, 8 100
Томат 3, 0 0, 5 0, 6 0, 2 0, 5 30
Перец сладкий 4, 0 0, 2 1, 5 1, 0 0, 7 200
Баклажан 3, 0 0, 2 0, 9 1, 0 0, 5 5
Огурец 1, 5 0, 005 0, 8 0, 5 0, 4 5
Лук 10, 0 0, 2 1, 6 0, 6 0, 5 7
Чеснок 0, 5 0, 2 7, 0 1, 0 1, 0 15
Яблоня 9, 0 0, 7 0, 4 1, 0 0, 4 25
Груша 10, 0 0, 2 0, 4 0, 8 0, 4 15
Виноград 18, 0 0, 7 0, 7 0, 2 0, 6 6
Земляника 18, 0 1.4 1, 4 1, 2 0, 5 50
Крыжовник 7, 0 2, 0 0, 8 2, 3 0, 5 35
Смородина 8, 0 2, 5 1, 4 2, 0 0, 5 200
Вишня 9, 0 1, 8 0, 9 0, 2 0, 5 17
Апельсин 7, 0 1, 4 0, 9 2, 5 0, 7 65
Лимон 2, 5 5, 8 0, 9 2, 5 0, 6 55

Качество сельскохозяйственной продукции определяется содержанием в ней необходимых органических и минеральных соединений.

Различные сельскохозяйственные культуры выращивают для получения продукции с определенным содержанием белков, сахаров, клетчатки, витаминов и других веществ. Например, высокое содержание клетчатки в сене ухудшает его кормовые свойства, в то же время такие культуры, как хлопчатник, лен, коноплю, выращивают ради получения волокна, которое состоит в основном из клетчатки.

Качество сахарной свеклы оценивают по содержанию сахарозы. Бобовые культуры оценивают по величине накопления белка.

Из диоксида углерода, поглощаемого в основном листьями, и воды, поступающей через корни, в растении в процессе фотосинтеза образуются простые безазотистые органические вещества, состоящие из углерода, кислорода и водорода; в состав белков входит еще азот. На долю углерода, кислорода, водорода и азота приходится 95 % сухой массы растений (углерод 45 %, кислород 42, водород 6, 5, азот 1, 5 %). Эти четыре элемента названы органогенными.

При сжигании растения остаются зольные элементы, на долю которых приходится около 5 % массы сухого вещества.

Содержание азота и зольных элементов в растениях зависит от биологических особенностей и условий выращивания и неодинаково в различных органах. Например, в корнях, стеблях и листьях больше зольных элементов, чем в семенах.

Состав золы различных растений различен и отражает неодинаковую потребность культур в элементах минерального питания. Содержание фосфора и калия в золе растений принято выражать в форме соответствующих оксидов.

На долю калия в золе листьев большинства растений приходится 30-50 %, а в люцерне, клевере, вике содержание кальция значительно выше, чем калия. Содержание калия, фосфора и серы снижается в старых листьях, а кальция повышается от 20-40 до 50-60 % от массы золы.

В растениях обнаружено более 70 химических элементов. Можно предположить, что современные методы анализа позволят в дальнейшем расширить эти данные. Элементы, необходимые растениям, относятся к различным группам Периодической системы химических элементов Д. И. Менделеева.

I.  Н, (Li), Na, К, Си, (Ag).

II.  Mg, Са, Zn, (Sr, Cd).

III.  В, (Al).

IV.  C, (Si), (Ti, Pb).

V.  N, P, V.

VI.  O, S, Mo, (Cr, Se).

VII.  Cl, I, Mn, (F).

VIII.  Fe, Co, (Ni).

К необходимым относят элементы, без которых растения не могут полностью закончить цикл развития и которые нельзя заменить другими элементами. По 12 условно необходимым элементам в ряде опытов имеются сведения об их положительном действии.

Элементы, содержащиеся в растительном организме в значительных количествах (от сотых долей до целых процентов), называют макроэлементами . Элементы, содержание которых в растениях выражается тысячными и стотысячными долями процентов, относят к микроэлементам, а элементы, находящиеся в еще меньших количествах, – к ультрамикроэлементам. Такое деление весьма условно. Например, железо по количественному содержанию следует относить к макроэлементам, а по выполняемым функциям – к микроэлементам.

 

Рис 3. Вещества, поступающие в растения

Содержание микроэлементов в различных органах растений имеет определенные закономерности. Например, марганец и молибден, как правило, в больших количествах содержатся в листьях, а цинк, бор, кобальт, медь при достаточной обеспеченности этими элементами накапливаются как в вегетативных, так и в генеративных органах. Для зерновых культур характерно относительно более высокое содержание бора в зерне, а для большинства бобовых растений – в вегетативных органах.

Разные биологические группы растений существенно различаются по своим требованиям к оптимальным концентрациям отдельных микроэлементов. Например, кукуруза и табак нуждаются в больших количествах цинка, зерновые культуры отзывчивы на дополнительное обеспечение марганцем и молибденом.

Особенности содержания и распределения в растениях элементов минерального питания определяют различия в требованиях отдельных сельскохозяйственных культур к элементам питания.

Элементы питания растений относятся к факторам внешней среды и в то же время принципиально отличны от ряда других факторов (температуры, рН и т. д.), так как в процессе поглощения превращаются из внешнего фактора среды во внутренний фактор растительного организма.

Существуют два типа питания живых организмов: автотрофный – усвоение минеральных солей, воды и углекислого газа и синтез из них органического вещества – и гетеротрофный – использование организмами готовых органических веществ. Животные и большинство микроорганизмов относятся к гетеротрофам. Растения – автотрофные организмы.

Благодаря процессу питания (воздушному и корневому) растение создает свои структурные элементы и при хорошо сбалансированном питании быстро наращивает массу.

В основе жизни растительного организма лежит многообразие реакций обмена как с внешней средой, так и внутри клетки и между клетками или различными органами. При этом сбалансированное поступление отдельных химических элементов обеспечивает последовательность и сопряженность всех биологических реакций и физиологических функций организма.

Основным процессом, в результате которого создаются органические вещества в растениях, является фотосинтез, хотя растения в небольших количествах могут усваивать из окружающей среды аминокислоты, ростовые вещества, витамины, антибиотики, а также СО2 в процессе темновой фиксации. Интенсивность усвоения элементов минерального питания зависит не только от биологических особенностей данного растения и условий внешней среды (наличие элементов в доступной форме и в достаточном количестве в почвенном растворе, необходимая температура, аэрация почвы и т. д.), но и от количества энергии и органических веществ, образованных им в процессе фотосинтеза. Поступление минеральных веществ в растение лимитируют многие факторы. Растение через листья получает 95 % и более углекислого газа и может усваивать путем некорневого питания из водных растворов также зольные элементы, серу и азот. Однако основное количество азота, воды и зольных элементов поступает в растение из почвы через корневую систему.

Корневая система растений поглощает из почвы как воду, так и питательные вещества. Оба эти процесса взаимосвязаны, но осуществляются на основе разных механизмов. Из очень разбавленных растворов соли поглощаются быстрее, чем вода, и раствор становится еще более слабым. Наоборот, из концентрированных растворов растение берет больше воды, чем солей, и раствор становится еще более концентрированным.

Растения поглощают вещества избирательно, в результате соотношение поглощенных веществ обычно оказывается иным, чем в питательном растворе. Функционально поглотительной тканью корня является ризодермис, главным образом, корневые волоски, а первая ассимиляция ионов питательных солей происходит в коре корня. Обеспеченность растения питательными веществами зависит от размера их корневой системы и притока этих веществ к поверхности корней.

Различают следующие механизмы поступления питательных веществ:

1) Корневой перехват питательных веществ: корни в процессе роста вступают в контакт с новым объемом почвы и поглощают содержащиеся в ней питательные вещества;

2) Массовый поток ионов к поверхности корней с потоком воды при поглощении её корнями растения: это основной путь, зависит от содержания воды в почве, концентрации ионов в почвенном растворе, скорости их поглощения корнями и размера корневой системы;

3) Диффузионный поток ионов к корню: поглощение того или иного питательного вещества сопровождается уменьшением его концентрации у поверхности корня и возникновения перпендикулярного к его поверхности градиента концентрации, в направлении которой ионы будут диффундировать к корню из ризосферы.

Корневое питание

Питание растений – процесс поглощения и усвоения из окружающей среды химических элементов, необходимых для их жизни. Одни питательные элементы растения поглощают из воздуха в форме углекислого газа и молекулярного кислорода, другие – из почвы в форме воды и ионов минеральных солей. Соответственно различают воздушное (фотосинтез) и почвенное (корневое) питание.

Усложнение растений, увеличение их размеров сопровождалось появлением различных органов и тканей, выполняющих функцию поглощения и передвижения веществ. Большинство растений поглощает воду и минеральные вещества из почвы корнями. Корень называют нижним концевым двигателем веществ у растений

Почвенное питание у папоротников и семенных растений осуществляется с помощью корня. Строение корня приспособлено к поглощению воды и элементов питания из почвы. В этом процессе участвует зона поглощения (всасывания), которая имеет корневые волоски. При рассматривании корневого волоска под микроскопом видно, что он представляет собой молодую клетку, которая покрыта оболочкой, имеет ядро, цитоплазму и органоиды. На 1 мм2 поверхности корня может располагаться от 200 до 400 корневых волосков. За счет этого всасывающая поверхность корня увеличивается примерно в 18 раз. Корневые волоски недолговечны, живут в среднем 10-12 суток, но ежедневно по мере роста корня на молодом его участке образуются новые корневые волоски.

Клетка корневого волоска поглощает воду благодаря тому, что содержащиеся в ней неорганические и органические вещества создают высокую концентрацию раствора, превышающую концентрацию почвенного раствора, окружающего корневой волосок. Вода (по законам осмоса) передвигается из менее концентрированного почвенного раствора в более концентрированный раствор, который находится в корневом волоске. В засуху концентрация почвенного раствора возрастает, и поглощение воды корневыми волосками затрудняется.

Большое значение в поглощении элементов питания играют корневые выделения, которые растворяют труднодоступные минеральные вещества. Растворяющим действием обладает выделяемая корнями углекислота. Некоторые растения выделяют органические кислоты (яблочную, щавелевую и др.), которые обладают большой растворяющей способностью.

За зоной всасывания расположена проводящая зона корня. В нее из зоны всасывания поступают поглощенные корневыми волосками вода и минеральные вещества. По проводящей ткани они передвигаются вверх по растению.

Всасывание воды корнем и ее передвижение можно обнаружить по " плачу" растений и гуттации. " Плачем " растений называют выделение сока (пасоки) из перерезанного стебля. Особенно интенсивно выделяется пасока весной. Гуттация – это выделение капелек воды неповрежденным растением по краям листа у окончания листовых жилок. Гуттацию можно увидеть рано утром у многих растений, например, у садовой земляники, манжетки, розы и др. " Плач" и гуттация свидетельствуют о том, что вода поступает из корня в стебель под давлением. Это корневое давление. Вместе с водой в растение из почвы поступают растворенные в ней минеральные соли.

В период интенсивного роста здоровые, с хорошо развитыми корнями растения нуждаются в усиленном питании для формирования зеленых побегов, цветков и плодов. Поглощение элементов питания корнями является сложным физиологическим процессом, связанным с обменом веществ. Для поглощения питательных веществ и нормальной жизнедеятельности корней необходимы доступ воздуха к корням, благоприятная температура окружающей среды, оптимальные кислотность (рН) раствора, состав и концентрация солей в почве.

Гидропонный способ выращивания растений, или гидропоника (от греч. hidros –" влажный" и ропео – " работать", " трудиться" ), позволил установить, что все минеральные вещества растения получают из их водных растворов. Разные растения нуждаются в разных количествах минеральных веществ. Так, растения пшеницы на площади 1 га поглощают более 40 кг азота, 20 кг фосфора, 25 кг калия, при урожае в 30 ц/га рожь вынесет из почвы 75 кг азота, 45 кг фосфора и 90 кг калия. А картофель использует питательных веществ больше, чем зерновые, многолетние и однолетние травы.

Установлено также, что одни минеральные вещества требуются растениям в относительно больших количествах (соли калия, азота, кальция, фосфора, магния и прочие макроэлементы), другие вещества и элементы требуются в ничтожных количествах (микроэлементы цинк, молибден, медь, железо, бор и др.).

Концентрация питательных веществ может колебаться в довольно широких пределах. Организм растения, извлекая эти вещества из внешней среды, создает в тканях их необходимую концентрацию. Если этих веществ в воде и грунте достаточно, растение развивается правильно, быстро растет, цветет и плодоносит. При недостатке одного или нескольких необходимых веществ отмечается отставание в росте, изменение формы растения, прекращается размножение. Иногда наблюдается избыток тех или иных химических элементов, что также может вызвать нарушение развития растений.

Если удобрения вносят в количествах, превышающих потребности растений, то урожайность не увеличивается, а качество продукции может даже ухудшиться. Так, избыточное азотное питание капусты приводит к недостатку в ней сахаров, капуста плохо хранится. При избытке в почве солей азота в клубнях картофеля снижается содержание крахмала, у многих растений в клетках накаливаются нитраты. Употребление в пищу овощей, картофеля и других продуктов, содержащих избыток нитратов, оказывает вредное влияние на здоровье человека.

Для роста и развития растениям необходимы различные элементы питания, потребность в каждом из которых разная.

Азот оказывает основное влияние на величину урожая

Продуктивность растений и поглощение ими макро- и микроэлементов находится в прямой зависимости от содержания элементов питания в почве.

В почве элементы питания находятся в:

• почвенном растворе, • органическом веществе почвы, • твердой минеральной фазе.

Доступными для растений являются только растворимые и обменно-поглощенные формы.

Переход из недоступной в доступную форму происходит в результате:

• минерализации органического вещества,

• разрушения минералов почвы (выветривание, химические процессы),

• изменения реакции среды (рН почвенного раствора), при которой соли выпадают

в осадок,

• микробиологического закрепления элементов, поглощения почвенной биотой,

• закрепления элементов в почвенном поглощающем комплексе.

 

 

Рис. 4. Переход из недоступной в доступную форму

 

Уменьшают доступность элементов питания из почвы:

• низкая влажность почвы,

• низкие температуры,

• бесструктурность почв,

• высокий или низкий уровень рН среды.

Избыток или недостаток какого-либо элемента блокирует поступление других, даже если это микроэлемент, и он необходим в небольшом количестве – природный закон минимума, открытый ученым Юлиусом Вон Либехом еще в позапрошлом веке.

Подобно воде в бочке, которая вытекает через самый низкий уровень, делая невозможным заполнение бочки водой. Образно урожай как вода – сколько ни наливай, или сколько ни вноси других удобрений, если не хватает одного, то урожая не будет.

Важно оценить не только количество, но и формы, в которых элементы находятся в почве. В целом поглощение элементов питания зависит от общей концентрации солей в почвенном растворе. Оптимальная концентрация почвенного раствора для наилучшей усвояемости 0, 01-0, 05 %

Повышенная концентрация почвенного раствора увеличивает его осмотическое давление и затрудняет поступление в растение воды и питательных веществ. Это связано с тем, что в большинстве почв (незасоленных) концентрация 0, 02-0, 2 %. Растения поглощают элементы питания в результате процессов осмоса. Из раствора через мембраны корешков элементы питания поступают в клетки корня.

Очень важно соотношение доступных элементов питания в почве. Каждой сельскохозяйственной культуре необходимо определенное соотношение, изменяющееся в течение вегетации.

От соотношения зависит поступление питательных веществ в растение. Внесение только одного простого вида удобрения не может в полной степени удовлетворить потребности растения в питании. Поэтому, наиболее эффективно применять комплексные минеральные удобрения, содержащие весь комплекс необходимых элементов питания в оптимальном соотношении.

Внекорневое питание

Внекорневое питание растений – питание растений через листья. Возможность внекорневого питания растений установил английский химик Х. Дэви в начале 19 века, в 1878 экспериментально подтвердил французский химик и физиолог растений Ж.Б. Буссенго.

Внекорневое питание растений применяется для устранения хлороза растений, в частности древесных пород, путём опрыскивания их слабыми растворами солей железа. В основе поглощения солей листьями, как и корнями, лежит обменная адсорбция. Поглощённые листьями питательные вещества быстро перемещаются в другие органы, вверх и вниз по стеблю, в корень. Минеральные вещества включаются в состав белков, ферментов, пигментов пластид и др., образуя ряд органо-минеральных соединений. При внекорневом питании растений макро- и микроэлементами повышается интенсивность ряда физиологических процессов, в частности фотосинтеза, и в несколько меньшей мере – дыхания и ряда ферментативных процессов. Опрыскивая растения в период цветения растворами бора и др. микроэлементов, можно улучшить завязывание плодов и уменьшить их опадение.

Внесение элементов питания через листовую поверхность – это полезное дополнение к питанию растений. Рациональная листовая подкормка не только дополнит корневое питание, но и скорректирует питание культуры в критические периоды вегетации.

Незаменимо некорневое внесение в периоды с неблагоприятными климатическими условиями, когда затруднено поглощение элементов корневой системой (заморозки, переувлажнение, засуха, экстремально высокие температуры воздуха и грунта, щелочные или кислые почвы и др.).

Листовая подкормка – идеальное средство для стимуляции физиологических процессов в растении, ответственных за повышение качества урожая, усиления устойчивости растения к вредителям и болезням.

Лекция 1. ВВЕДЕНИЕ В АГРОХИМИЮ, ПИТАНИЕ РАСТЕНИЙ

 


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 652; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.074 с.)
Главная | Случайная страница | Обратная связь