Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЗНАЧЕНИЕ БИОЛОГИИ ДЛЯ МЕДИЦИНЫ



Многие биологические науки являются основой теоретической и практической медицины. Так, на основе морфологических наук (анатомия, гистология, цитология) успешно развивается патологическая анатомия, а на основе физиологии, биохимии и генетики – патологическая физиология.

Эпидемиология своими успехами обязана зоологии, паразитологии, бактериологии, вирусологии. Становление акушерства было тесно связано с эмбриологией. На успехах анатомии, физиологии и биохимии основывались многие достижения терапии и хирургии. С учетом этого нет необходимости в специальном объяснении роли изучения биологических наук в подготовке врача. Познание закономерностей развития патологических процессов, диагностика, лечение и профилактика заболеваний немыслимы без знания о строении и жизнедеятельности клеток, тканей, органов и целостного организма человека в норме, без знания закономерностей наследственности и изменчивости, а также приспособляемости организма человека к изменяющимся условиям внешней среды.

В настоящее время современная биология находится на полосе открытий, значение которых трудно переоценить. Это, прежде всего, успехи, связанные с развитием генетики, а именно, расшифровка генома человека, клонирование, успехи в пересадке органов и работы со стволовыми клетками. Сегодня смело можно утверждать, что во многом от успехов биологии будут зависеть перспективы будущего развития всего человечества.

Роль биологии в системе подготовки врача определяется формированием общекультурных, общепрофессиональных и профессиональных компетенций, системных фундаментальных знаний, умений и навыков по общим биологическим закономерностям, представляющих наибольший интерес для практического здравоохранения, в подготовке студентов к системному восприятию общемедицинских, социальных и клинических дисциплин и формировании у них естественнонаучного мировоззрения, логики биологического мышления, необходимых для последующей практической деятельности врача.

ОСНОВНЫЕ СВОЙСТВА ЖИВОГО

Фундаментальные свойства живых организмов: саморегуляция, самообновление, самовоспроизведение.

Живое характеризуется целым рядом важнейших признаков:

1. Обмен веществ, энергии и информации. Любой живой организм можно представить как открытую систему, поддерживающую непрерывный обмен веществ и энергии с окружающей средой. Основу обменных процессов составляют реакции пластического (анаболизм) и энергетического обмена (катаболизм).

По типу анаболизма живые организмы подразделяют на автотрофные (фотосинтезирующие и хемосинтезирующие), гетеротрофные (сапротрофные и паразиты), миксотрофные.

По типу катаболизма организмы бывают аэробными и анаэробными.

2. Структурная организация. Живое построено из тех же химических элементов, что и неживое, но характеризуется сложностью химических соединений, обусловленной определенной упорядоченностью на молекулярном уровне. Структурная организация – характерное свойство живого на всех уровнях его организации. Типичный пример упорядоченной структуры – хромосома (единство нуклеиновых кислот и белков).

3. Дискретность и целостность. Органический мир целостен, т.к. составляет систему взаимосвязанных частей, и в то же время он дискретен (лат. discretus – прерывистый). Органический мир состоит из отдельных единиц – организмов или особей. Каждый организм состоит из клеток, но функционирует как единое целое.

4. Репродукция – воспроизведение себе подобного.

5. Наследственность и изменчивость важнейшие признаки живого, связанные с передачей потомству от родителей наследственных признаков организма и с возможностью их изменяться под влиянием факторов среды.

6. Рост и развитие признаки организма, обеспечивающие увеличение размеров и развитие за счет деления клеток и их дифференцировки.

7. Раздражимость и движение. Признаки живого, благодаря которым организмы непрерывно контактируют с окружающей средой, другими организмами. У одноклеточных – в виде таксисов, у растений – в виде тропизмов, у высших животных – в виде рефлексов.

8. Внутренняя регуляция и гомеостаз. Любой организм, являясь открытой системой, сохраняет в тоже время постоянство своей внутренней среды (гомеостаз) благодаря нейрогуморальной регуляции гомеостаза.

УРОВНИ ОРГАНИЗАЦИИ ЖИВЫХ СУЩЕСТВ

 

Выделяют четыре уровня организации живого:

1. Молекулярно-генетический. Элементарной структурой этого уровня является генетический код, передаваемый от поколения к поколению, а элементарным явлением – воспроизведение кодонов по принципу матрицы.

2. Клеточный. Элементарной стриктурой этого уровня является клетка, а элементарным явлением – деление клеток, их развитие, биосинтез белка в процессе реализации наследственной информации.

3. Онтогенетический. Элементарные структура этого уровня - организм, а элементарное явление – закономерности онтогенеза.

4. Популяционно-видовой. Здесь элементарными структурами являются популяции любого вида живых организмов, а элементарное явление – направленное изменение их генетического состава (генофонда). Последнее ведет к возникновению приспособлений и, в итоге, к видообразованию на основе естественного отбора.

4. Биосферно-биогеоценотический. Элементарными структурами этого уровня являются биогеоценозы, а элементарными явлениями смена биогеоценозов – переходы из одного состояния, временного, неустойчивого равновесия в другое. Принципиальная неделимость биосферы обуславливает необходимость решения многих проблем охраны природы и использования ее ресурсов.

 

ПРОИСХОЖДЕНИЕ ЖИЗНИ

 

Существуют две главные гипотезы, по-разному объясняющие появление жизни на Земле. Согласно гипотезе панспермии, жизнь занесена из космоса либо в виде спор микроорганизмов, либо путем намеренного «заселения» планеты разумными пришельцами из других миров.

Прямых свидетельств в пользу космического происхождения жизни нет. Космос, однако, наряду с вулканами мог быть источником низкомолекулярных органических соединений, раствор которых послужил средой для развития жизни.

Современной наукой возраст Земли оценивается в 4, 5—4, 6 млрд. лет. Появление на планете первых водоемов, с которыми связывают зарождение жизни, отстоит от настоящего времени на 3, 8—4 млрд. лет. Полагают, что около 3, 8 млрд. лет назад жизнь могла стать определяющим фактором планетарного круговорота углерода. В породах вблизи местечка Фиг-Три (Южная Африка), имеющих возраст более 3, 5 млрд. лет, обнаружены бесспорные следы жизнедеятельности микроорганизмов.

Таким образом, процесс образования примитивных живых существ шел относительно быстро. Ускорению процесса могло способствовать то, что простейшие органические вещества были из нескольких источников: абиогенно образующиеся в первичной атмосфере и в то же время поступающие с оседающей на поверхность планеты космической и вулканической пылью. Подсчитано, что Земля, проходя через пылевое облако в течение 1 млрд. лет, могла получить с космической пылью 10 млрд. т органического материала. Это всего в 300 раз меньше суммарной биомассы современных наземных организмов (3 • 1012 т). Вулкан за одно извержение выбрасывает до 1000 т органических веществ.

Согласно второй гипотезе, жизнь возникла на Земле, когда сложилась благоприятная совокупность физических и химических условий, сделавших возможным абиогенное образование органических веществ из неорганических.

В середине прошлого столетия Л. Пастер окончательно доказал невозможность самозарождения жизни в теперешних условиях. В 20-х годах текущего столетия биохимики А. И. Опарин и Дж. Холдейн предположили, что в условиях, имевших место на планете несколько миллиардов лет назад, образование живого вещества было возможно. К таким условиям они относили наличие атмосферы восстановительного типа, воды, источников энергии (в виде ультрафиолетового (УФ) и космического излучения, теплоты остывающей земной коры, вулканической деятельности, атмосферных электрических явлений, радиоактивного распада), приемлемой температуры, а также отсутствие других живых существ.

Главные этапы на пути возникновения и развития жизни, по-видимому, состоят в: 1) образовании атмосферы из газов, которые могли бы служить «сырьем» для синтеза органических веществ (метана, оксида и диоксида углерода, аммиака, сероводорода, цианистых соединений), и паров воды; 2) абиогенном (т.е. происходящем без участия организмов) образовании простых органических веществ, в том числе мономеров биологических полимеров — аминокислот, Сахаров, азотистых оснований, АТФ и других мононуклеотидов; 3) полимеризации мономеров в биологические полимеры, прежде всего белки (полипептиды) и нуклеиновые кислоты (полинуклеотиды); 4) образовании предбиологических форм сложного химического состава — протобионтов, имеющих некоторые свойства живых существ; 5) возникновении простейших живых форм, имеющих всю совокупность главных свойств жизни, — примитивных клеток; 6) биологической эволюции возникших живых существ.

Возможность абиогенного образования органических веществ, включая мономеры биологических полимеров, в условиях, бывших на Земле около 4 млрд. лет назад, доказана опытами химиков. В лабораторных условиях при пропускании электрических разрядов через различные газовые смеси, напоминающие примитивную атмосферу планеты, а также при использовании других источников энергии ученые получали среди продуктов реакций аминокислоты (аланин, глицин, аспарагиновую кислоту), янтарную, уксусную, молочную кислоты, мочевину, азотистые основания (аденин, гуанин), АДФ и АТФ. Низкомолекулярные органические соединения накапливались в водах первичного океана в виде первичного бульона или же адсорбировались на поверхности глинистых отложений. Последнее повышало концентрацию этих веществ, создавая тем самым лучшие условия для полимеризации.

Возможность полимеризации низкомолекулярных соединений с образованием полипептидов и полинуклеотидов (определяющая следующий этап на пути возникновения жизни) непосредственно в первичном бульоне вызывает сомнения по термодинамическим соображениям. Водная среда благоприятствует реакции деполимеризации. Ученые предполагают, что образование полипептидов и полинуклеотидов могло происходить в пленке из низкомолекулярных органических соединений в безводной среде, например на склонах вулканических конусов, покрытых остывающей лавой. Это предположение находит подтверждение в опытах. Выдерживание в течение определенного времени при 130°С сухой смеси аминокислот в сосудах из кусков лавы приводило к образованию полипептидов.

Образующиеся описанным образом биополимеры смывались ливневыми потоками в первичный бульон, что защищало их от разрушающего действия УФ-излучения, которое в то время из-за отсутствия в атмосфере планеты озонового слоя было очень жестким.

По мере повышения концентрации полипептидов, полинуклеотидов и других органических соединений в первичном бульоне сложились условия для следующего этапа — самопроизвольного возникновения предбиологических форм сложного химического состава, или протобионтов. Предположительно они могли быть представлены коацерватами (А. И. Опарин) или микросферами (С. Фоке). Это коллоидные капли с уплотненным поверхностным слоем, имитирующим мембрану, содержимое которых составляли один или несколько видов биополимеров. Возможность образования в коллоидных растворах структур типа коацерватов или микросфер доказана опытным путем.

При определенных условиях коацерваты проявляют некоторые общие свойства живых форм. Они способны до известной степени избирательно поглощать вещества из окружающего раствора. Часть продуктов химических реакций, проходящих в коацерватах с участием поглощаемых веществ, выделяется ими обратно в среду. Происходит процесс, напоминающий обмен веществ. Накапливая вещества, коацерваты увеличивают свой объем (рост). По достижении определенных размеров они распадаются на части, сохраняя при этом некоторые черты исходной химической организации (размножение). Поскольку устойчивость коацерватов различного химического состава различна, среди них происходит отбор.

Перечисленные выше свойства ученые усматривают у протобионтов. Протобионты представляются как обособленные от окружающей среды, открытые макромолекулярные системы, возникавшие в первичном бульоне и способные к примитивным формам роста, размножения, обмена веществ и предбиологическому химическому отбору.

Предбиологическая эволюция протобионтов осуществлялась в трех главных направлениях. Важное значение имело совершенствование каталитической (ферментной) функции белков. Один из путей, дающих требуемый результат, заключается, по-видимому, в образовании комплексов металлов с органическими молекулами. Так, включение железа в порфириновое кольцо Гемоглобина увеличивает его каталитическую активность в сравнении с активностью самого железа в растворе в 1000 раз. Развивалось такое свойство биологического катализа, как специфичность. Во-вторых, исключительная роль в эволюции протобионтов принадлежит приобретению полинуклеотидами способности к самовоспроизведению, что сделало возможным передачу информации от поколения к поколению, т.е. сохранение ее во времени. В основе этой способности лежит матричный синтез. Механизм матричного синтеза был использован также для переноса информации с полинуклеотидов на полипептиды. Третье главное направление эволюции протобионтов состояло в возникновении мембран. Отграничение от окружающей среды мембраной с избирательной проницаемостью превращает протобионт в устойчивый набор макромолекул, стабилизирует важные параметры обмена веществ на основе специфического катализа.

Разделение функций хранения и пространственно-временной передачи информации, с одной стороны (нуклеиновые кислоты), и использование ее для организации специфических структуры и обмена веществ — с другой (белки); появление молекулярного механизма матричного синтеза биополимеров; освоение эффективных систем энергообеспечения жизнедеятельности (АТФ); образование типичной биологической мембраны  — все это привело к возникновению живых существ, которые поначалу были представлены примитивными клетками.

С момента появления клеток предбиологический химический отбор уступил место биологическому отбору. Дальнейшее развитие жизни шло согласно законам биологической эволюции. Переломным моментом на этом пути было возникновение клеток эукариотического типа, многоклеточных организмов, человека.

 

 

РАЗДЕЛ I. ЦИТОЛОГИЯ


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 80; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.)
Главная | Случайная страница | Обратная связь