Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Физические основы тепловизионных приборов



 

1.1.1 Историческая справка

Существование теплового излучения за пределами видимого спектра было открыто Уильямом Гершелем в 1800 г. С помощью термометра, помещаемого за красным участком солнечного спектра при прохождении излучения сквозь диспергирующую призму, Гершель обнаружил невидимое глазом излучение, несущее энергию и проявляющееся своим тепловым действием. Впоследствии он доказал, что это излучение, названное инфракрасным, подчиняется тем же законам, что и видимый свет.

Только в 1830 г. появились первые приемники инфракрасного излучения на основе принципа работы термопары, которые стали называть термоэлементами. Появление в 1880 г. терморезистивных материалов, т.е. материалов, электрическое сопротивление которых изменяется в зависимости от температуры (болометры), позволило существенно улучшить чувствительность приемников инфракрасного излучения.

В период 1870–1920 гг. прогресс техники обеспечил разработку первых фотонных приемников, основанных на прямом взаимодействии между фотонами излучения и электронами материала приемника. Природа обнаружения излучения здесь другая – речь идет уже не о возникновении электрического сигнала в ответ на тепловое воздействие, а о непосредственном преобразовании излучения в электрический сигнал. Эти приемники, фоторезисторы или фотодиоды, имеют гораздо большее быстродействие и более высокую чувствительность, чем тепловые приемники.

В период 1930–1944 гг. были разработаны приемники на основе сульфида свинца (PbS). Эти приемники чувствительны в спектральном диапазоне 1, 5 ч3 мкм. В 1940–1950 гг. рабочий спектральный диапазон был расширен на среднюю инфракрасную область (3 ч5 мкм), когда появился приемник из антимонида индия (InSb), а в 1960-х гг. началось применение в более длинноволновом диапазоне 8 ч14 мкм приемников КРТ (кадмий – ртуть – теллур (HgCdTe)). Приемники этих типов требуют охлаждения.

Фотонные приемники благодаря высокой чувствительности и быстродействию позволили разработать термографические и тепловизионные системы, основанные на обнаружении инфракрасного излучения, испускаемого телами в интервале длин волн 2ч15 мкм.

Физические принципы

Материя непрерывно испускает и поглощает электромагнитное излучение. Процесс излучения связан с возбуждением молекул внутри вещества, в результате чего возникают излучательные переходы электронов. Выделяющаяся энергия уносится квазичастицами – квантами (фотонами) электромагнитного поля, имеющими энергию W.

Освобожденная в форме излучения энергия W характеризуется длиной волны л;

 

W = hc / л,

 

где h= 6, 63*10-34 Дж*с – постоянная Планка, с = 3 * 108 м/с – скорость света.

Длина волны испускаемого излучения обратно пропорциональна энергии, выделившейся при переходе. Важно отметить в этой связи, что в инфракрасной области по сравнению с видимой длины волн велики и энергия соответственно мала. Это предопределяет трудности обнаружения отдельных фотонов инфракрасного излучения.

Если в веществе происходят все возможные переходы (тепловое возбуждение молекул), то каждый атом излучает определенную энергию, а в совокупности энергетические уровни принимают все возможные значения; распределение энергии по длинам волн в таком случае непрерывное и спектр испускания излучения непрерывный.

В некоторых средах разрешенными оказываются только вполне определенные переходы (квантованные переходы электрона внутри атома), излучение происходит тогда на дискретных длинах волн и спектр испускания излучения линейчатый. Явление поглощения излучения веществом является обратным процессом и может быть более или менее селективным на длинах волн, присущих рассматриваемой среде.

Спектр излучения произвольно делят на области по признаку функциональных особенностей источников или приемников излучения. Участки электромагнитного спектра показаны ниже в таблице 1.1.

 

Таблица 1.1. Спектр электромагнитного излучения

Космические лучи

Гамма-лучи

Рентгеновские лучи

УФ-излучение

 

Инфракрасное излучение

Радиоволны

 

           

 

          свч укв вч пч нч    
л

0, 001Ǻ 0.1Ǻ 1Ǻ 10 Ǻ 100 Ǻ 0, 1 мкм 1 мкм 10 мкм 100 мкм 0, 1 см 1 см 10 см 1 м 10 м 100 м 1 км 10 км 100 км

н, Гц

3*1021 3*1019 3*1018 3*1017 3*1016 3*1015 3*1014 3*1013 3*1012 3*1010 3*108 3*106 3*104

                                           

 

Инфракрасный спектр соответствует области излучения вещества при температурах, наблюдаемых обычно на поверхности Земли. При этих температурах, называемых обычными, все тела имеют заметное излучение. Объект, который не должен наблюдаться в инфракрасной области, следует охлаждать. Так, для уменьшения в 100 раз излучения в окрестности л = 4 мкм объекта с температурой + 20°С его следует охладить примерно на сотню градусов.

С учетом характеристик приемников, используемых для обнаружения излучения, инфракрасную область делят на три больших участка – ближняя инфракрасная область (длины волн 0, 75ч1, 5 мкм), средняя инфракрасная область (длины волн 1, 5ч20 мкм) и дальняя инфракрасная область (длины волн 20ч1000 мкм).

Инфракрасное излучение в ближней инфракрасной области обнаруживается специальными фотографическими эмульсиями (чувствительными в области до л = 1 мкм), фотоэлементами с внешним фотоэффектом, а также фоторезисторами и фотодиодами. В средней инфракрасной области инфракрасное излучение обнаруживается тепловыми приемниками, фоторезисторами и фотодиодами. В дальней инфракрасной области для обнаружения излучения применяются в основном тепловые приемники.

Спектр излучения черного тела можно рассчитать в соответствии с законом Планка:

 

dR (л, T)/dл= 2 рhc2 л-5/[exp (hc/ лkT) – 1] Bт/м3

 

Здесь dR (л, T)/dл – спектральная поверхностная плотность потока излучения, т.е. мощность излучения, испускаемого единицей поверхности черного тела в единичном интервале длин волн; h = 6, 6256*10-34 Дж*с, или Вт*с2 – постоянная Планка; к = 1, 38054*10-23 Дж/К – постоянная Больцмана; с =2, 998* 108 м/с – скорость света; Т – абсолютная температура черного тела в Кельвинах.

Спектральная плотность потока излучения черного тела зависит от длины волны и от температуры. Удобно представить закон Планка в форме семейства кривых:

 

dR (л, T)/dл=fт(л)

 

Кривая спектрального распределения величины dR (л, T)/d л при заданном значении температуры T проходит через максимум. Смещение максимума в функции температуры описывается законом смешения Вина, который получают дифференцированием закона Планка:

 

л макс= 2898/ Т мкм,

dR(л макс T)/dл= 1, 286*10-15Т5 Вт/см2*мкм

 

где температура Т выражена в Кельвинах.

Следовательно, объект при температуре окружающей среды Т = 290 К имеет максимум спектральной плотности потока излучения при л макс=10 мкм, в то время как Солнце, эффективная (кажущаяся) температура которого ~ 6000 К, имеет максимум при л макс=0, 5 мкм. Заметим, что жидкий азот (Т = 77К) имеет максимум при л макс=38 мкм.

Закон смещения Вина наглядно объясняет сдвиг в сторону коротких волн максимума (видимого или невидимого) излучения тел по мере их нагрева.

Закон, получаемый интегрированием закона Планка по л в пределах от нуля до бесконечности называется законом Стефана – Больцмана. Он определяет интегральную плотность (мощность) потока излучения черного тела при температуре Т:

 

RT=уT4


у=2р5k4/15c2h3=5, 67*1012 Вт/(см24)=5, 67*108 Вт(м24) – постоянная Стефана – Больцмана.

 

Рис. 1.1 Спектральное распределение поверхностной плотности потока излучения различных источников: 1 – Солнце, Т – 6000 К; 2 – излучение черного тела при температуре окружающей среды Т – 290 К; 3 – излучение черного тела при температуре Т=77 К

 

Физически RТ представляет собой площадь под кривой dR (л, T)/d л=fT(л).

Если закон планка проинтегрировать по диапазону длин волн ла – лb, то мы получим мощность излучения черного тела в этом диапазоне при температуре Т:

 

 

где ла – нижняя граница диапазона, лb – верхняя граница.

 

 


Рис. 1.2. Поверхностная плотность потока излучения в спектральной полосе

 


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 203; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь