Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тема 7.БИОДИНАМИКА ДВИГАТЕЛЬНЫХ КАЧЕСТВ



1.Биологические и физиологические механизмы развития двигательных качеств 2.Характеристика двигательных (локомоторных) качеств 3.Силовые качества 4.Развитие силы и ее измерение 5.Методика развития (тренировка) силы мышц 6.Влияние различных факторов на проявление силы мышц. 7.Физическая работоспособность. 8.Развитие быстроты. 9.Развитие ловкости. 10.Развитие выносливости. 11.Развитие гибкости.

Биологические и физиологические механизмы развития

Двигательных качеств

Каждый человек владеет определенными двигательными навы­ками, например, может поднять определенный вес, пробежать или прыгнуть и т. п., но возможности у всех различны. Это связано и с возрастом, и наследственностью и, главное, с тренированно­стью. Двигательные качества отличаются друг от друга по форме и по затраченной энергии. Двигательные качества — это функциональные свойства организма, определяющие его двигательные способности.

Они проявляются в одинаковой форме движений и энергетического обеспечения и имеют анало­гичные физиологические механизмы.

Поэтому методики совершенствования (тренировки) тех или иных качеств имеют общие черты независимо от конкретного вида движения. Например, выносливость марафонца во многом сходна с выносливостью лыжника-гонщика, велогонщика, конькобежца и т. п. Сила (F), скорость (V) и длительность (продолжительность) движения находятся в определенных соотношениях друг с другом. Это соотношение различно в разных видах деятельности (в раз­ных видах спорта).

При сокращении мышцы развивают большие усилия, которые зависят от поперечного сечения, начальной длины волокон и ряда других факторов. Сила мышцы на 1 см2 ее поперечного сечения называется абсолютной мышечной силой.Для человека она рав­на от 50 до 100 Н.

Сила и мощность одних и тех же мышц зависят от ряда физио­логических условий: возраста, пола, тренировки, температуры воз­духа, исходного положения при выполнении упражнений, биорит­мов и т. д.

Внешнее проявление сократительной активности мышцы (пучка волокон или волокна) состоит в том, что при ее фиксированной длине развивается усилие, а при фиксированной нагрузке проис­ходит укорочение. Эксперимент с мышцами проводится в двух режимах: изометрическом, когда длина мышцы фиксирована и изотоническом, когда мышца имеет возможность укорачивать­ся при постоянной нагрузке (рис. 14.1). На рисунке видно, что изо­метрическое усилие развивается очень быстро и достигает своей максимальной величины примерно через 170 мс после возбужде­ния. Начиная с 200 мс оно снова уменьшается с возрастающей ско­ростью. Интересно отметить, что даже через 900 мс в мышце еще сохраняется некоторое напряжение, что может быть обусловлено только активными физическими и химическими процессами.

С 10О 200 ЗО0 W 500 ВОВ Время,с

Рис. 14.1. Изометрическое и изотоническое одиночное сокращение. Портняж­ная мышца лягушки при 0°С (по В. Jewell, D. Wilkie, 1960)

Изотоническое одиночное сокращение существенно отличает­ся от изометрического. Укорочение в процессе изотонического одиночного сокращения начинается только тогда, когда в мышце развивается достаточное усилие, равное по величине внешнему. В результате одиночное сокращение начинается тем позднее, чем больше нагрузка. Укорочение вначале почти линейно зависит от времени и достигает максимальных значений тем раньше, чем больше нагрузка. Затем наступает расслабление мышц с возрас­тающей скоростью, причем, так же как и укорочение, оно завер­шается тем раньше, чем больше груз. Если сделать нагрузку равной тому полному изометрическому усилию, которое мышца способна развить, то никакого внешнего укорочения не произойдет. При нулевой нагрузке скорость укорочения, очевидно, должна быть максимальной. Соотношение между нагрузкой и установившейся скоростью укорочения показано на рис. 14.2.

Для описания зависимости между силой и скоростью мышечно­го сокращения используют уравнение Хилла (А. Hill, 1938). V=b(F0 –F)·(F+a) или F=(Fo+a)(v/b+l)-a, где V— скорость укорочения; F — сила (нагрузка); F0 макси­мальная изометрическая сила, которую может развить мышца; b — константа, имеющая размерность силы. Максимальная скорость, соответствующая условно F = 0, из уравнения Хилла равна bF0/a. При раздражении мышцы серией импульсов, сле­дующих с постоянной частотой, второй и последующие импульсы будут оказывать разное действие в зависимости и от того, на ка­кой участок кривой «сила — время» они попадут.

10 20 30 40-10-2 Сила, Н

Рис. 14.2. Зависимость скорости от нагрузки на различных стадиях изотоничес­кого одиночного сокращения портняжной мышцы лягушки при 0°С:

1 — фаза развития напряжения, 2—4 — фазы расслабления (0,46; 0,64; 0,83 с);

напряжение составляет 0,6; 0,3 и 0,08 максимального

В описанных экспериментах (исследованиях) изотоническое укорочение или изометрическое усилие измерялось на мышцах, длина которых была близка к длине расслабленной мышцы или не­сколько превосходила ее.






Читайте также:

Последнее изменение этой страницы: 2016-03-17; Просмотров: 75; Нарушение авторского права страницы


lektsia.com 2007 - 2017 год. Все права принадлежат их авторам! (0.099 с.) Главная | Обратная связь