Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Система динамической стабилизации.



На глубинах морей более 200 м якорные системы стабилизации не обеспечивают требуемые допускаемые отклонения ПБС о вертикальной оси бурящейся скважины, становятся массивными, и их применение неэффективно. По этим причинам на глубинах более 200 м используют динамические системы стабилизации (динамического позицирования), которые по сравнению с якорными системами удержания имеют следующие преимущества:

§ Обеспечивают требуемую технологией бурения точность позицирования ПБС;

§ Осуществляют быстрое изменение курса БС или ППБУ в целях уменьшения бортовой и вертикальной качек;

§ Обеспечивают быстрый уход с точки бурения и возврат на нее ПБС.

Система динамической стабилизации представляет собой замкнутую цепь автоматического управления. Она включает:

1. Цепь обратной связи с датчикам, определяющими координаты продольного и поперечного перемещения по осям х, у и угол поворота φ ПБС относительно принятых неподвижных координат;

2. блок сравнения, который определяет отклонения Δх, Δу и Δφ действующего положения ПБС от его начального расчетного положения х0, у0, φ0 ;

3. пульты управления, имеющие прямые и обратные связи с двигателями и гребными винтами, рассчитывающие и подающее командного пункта на двигатели и гребные винты команды для возвращения ПБС в начальное положение.;

4. подруливающие устройства (двигателей и гребных винтов), обеспечивающие перемещение судна на величину Δх, Δу и Δφ и возвращение егов начальное положение.

На автоматизированном пункте управления универсальная ЭВМ по цепи обратной связи получает данные от внешних датчиков о положении ПБС в определенный момент. При этом угол поворота определяют гидрокомпасом, а координаты х, у вычисляются системой акустического измерения АМS. Эти данные имеют высокую точность, их используют в системе динамической стабилизации.

В системе динамической стабилизации имеются две ЭВМ: одна работает, а вторая в резерве. Система автоматической стабилизации включается в работу и контролируется оператором с главного пульта управления.

Осн.: 2. [ 207-209 ], 3. [ ]

Доп.: 7. [987-993]

Контрольные вопросы:

1. Какие системы удержания вы знаете?

2. Из чего состоит якорная система?

3. Из чего состоит система динамической стабилизации?.

4. Чем отличаются эти две системы удержания ПБС ?

 

Лекция № 8.Особенности бурения морских скважин. Подводное устьевое оборудование. Морской стояк.

Бурение скважин на море труднее и дороже, чем на суше. Обусловлено это наличием над придонным устьем скважины водного пространства, необходимостью применять специаль­ные морские основания для размещения на них бурового оборудования и выполнения с них комплекса работ, связан­ных с проводкой скважины, сложными гидрологическими и метеорологическими условиями работы на акваториях (ветры и волнения, приливы, отливы и течения, туманы, морось, снег и горизонтальная видимость, ледовый режим, темпера­тура воздуха и воды) и т.д.

Ветры, волнения и течения водного пространства, находящегося над придонным устьем скважины, вызывают качку плавучей буровой установки, перемещение оборудования и инструментов по ее палубе, дрейф и снос установки в на­правлении ветра или течения. Качка оказывает неблагоприят­ное физиологическое воздействие на людей, работающих на буровой установке. Волнение моря вредно и при бурении со стационарных (неподвижных) установок, так как волны, об­рушивающиеся на основание буровой, могут повредить его или полностью разрушить.

Рыхлые породы морского дна обычно сильно обводнены. При бурении в таких породах для обеспечения сохранности керна и устойчивости стенок скважин приходится использо­вать специальные технические средства и осуществлять тех­нологические мероприятия, требующие дополнительных ма­териальных затрат и удовлетворяющие жестким требованиям охраны окружающей среды от загрязнения.

Специфические гидрологические и метеорологические ус­ловия моря, ограничивают возможности и снижают эффективность применения способов, технических средств и технологий бурения, используемых на суше. Поэтому про­блема повышения эффективности бурения скважин на море до сих пор является одной из самых важных в процессе во­влечения в производство минеральных ресурсов подводных месторождений.

Для бурения и последующей эксплуатации таких скважин экономически оправданным является создание доро­гостоящих массивных стационарных, полустационарных и погружных конструкций оснований, которые позволяют раз­мещать на них традиционную буровую технику и использо­вать хорошо отработанные на суше технологии бурения, до­бычи, сбора и подготовки нефти и газа к транспортирова­нию.

Бурение разведочных скважин на море требует принципиально новых конструкций бурового обору­дования и технологий, которые гарантировали бы проходку скважин с соблюдением требований безопасности, экологичности и обеспечивали бы высокое качество работ при наи­меньших затратах. Для создания таких технологий и техники необходимо обобщить и оценить имеющийся опыт примене­ния современных технических средств и технологий бурения на море, научно обосновать рациональные пути их дальней­шего развития.

 

Условия бурения на море

На процесс бурения скважин на море влияют естествен­ные, технические и технологические факторы (рис.16). Наи­большее влияние оказывают естественные факторы, опреде­ляющие организацию работ, конструктивное исполнение техники, ее стоимость, геологическую информативность бу­рения и т.п. К ним относятся гидрометеорологические, гео­морфологические и горно-геологические условия.

Гидрометеорологические условия характеризуются волне­нием моря, его ледовым и температурным режимами, коле­баниями уровня воды (приливы —отливы, сгоны — нагоны) и скоростью ее течения, видимостью (туманы, низкая облач­ность, метели, осадки).

Для большинства морей, омывающих берега России (Японское, Охотское, Берингово, Белое, Баренцево, Татар­ский пролив), характерна следующая средняя повторяемость высоты волн, %: до 1,25 м (3 балла) - 57; 1,25 — 2,0 м (4 бал­ла) - 16; 2,0—3,0 м (5 баллов) - 12,7; 3,0—5,0 (6 баллов) -10. Средняя повторяемость высоты волн до 3,0 м в Балтий­ском, Каспийском и Черном морях составляет 93 %, 3,0 — 5,0 м - 5 %.

Для бурения на акваториях опасны отрицательные темпе­ратуры воздуха, вызывающие обледенение бурового основа­ния и оборудования и требующие больших затрат времени и труда на приведение в готовность силового оборудования по­сле отстоя.

Ограничивает время бурения на море также снижение ви­димости, которое в безледовый период чаще отмечается в ночные и утренние часы.

Геоморфологические условия определяются очертаниями и строением берегов, топографией и почвой дна, удаленностью точек заложения скважин от суши и обустроенных портов и т.п. Для шельфов почти всех морей характерны малые укло­ны дна. Изобаты с отметкой 5 м находятся на расстоянии 300—1500 м от берега, а с отметкой 200 м — 20 —60 км. Од­нако имеются желоба, долины, впадины, банки.

Почва дна даже на незначительных площадях неоднородна. Песок, глина, ил чередуются со скоплениями ракушки, гра­вия, гальки, валунов, а иногда и с выходами скальных пород в виде рифов и отдельных камней.

На первой стадии освоения морских месторождений твер­дых полезных ископаемых основным объектом геологичес­кого изучения являются участки в прибрежных районах с глубинами акваторий до 50 м. Это объясняется меньшей сто­имостью разведки и разработки месторождений на меньших глубинах и достаточно большой площадью шельфа с глуби­нами до 50 м.

Рис. 16.- Факторы, влияющие на эффективность бурения скважин на море

 

Требования к бурению разведочных скважин на море

Наибольшее распространение на море получили бурильные трубы нефтяного сортамента диа­метром 0,127 м. Соответственно диаметр скважины не может быть меньше 0,132 м.

Установленные геологические разрезы и глубины разведы­ваемых акваторий, геолого-методические и эксплуатационно-технические требования к бурению скважин рассмотрен­ных целевых назначений определяют следующие их пара­метры:

Максимальная глубина скважины, м:

по воде/по породам .............................................. 300/300

Диаметр скважины в рыхлых отложениях, м:

максимальный ................................................... 0,325/0,351

минимальный ................................................... 0,146/0,166

Диаметр скважины в коренных породах, м: ;

максимальный ................................................. 0,131

минимальный ................................................... 0,059

 

Основная зона шельфа, разведываемая геологами, состав­ляет полосу шириной от сотен метров до 25 км. Удаленность точек заложения скважин от берега при бурении с ледового припая зависит от ширины припайной полосы и для аркти­ческих морей достигает 5 км.

Горно-геологические условия характеризуются в основном мощностью и физико-механическими свойствами горных пород, пересекаемых скважиной. Отложения шельфа обычно представлены рыхлыми породами с включением валунов. Ос­новными составляющими донных отложений являются илы, пески, глины и галька. В различных соотношениях могут об­разовываться отложения песчано-галечные, суглинки, супеси, песчано-илистые и т.д. Для шельфа дальневосточных морей породы донных отложений представлены следующими вида­ми, %: илы — 8, пески — 40, глины — 18, галька — 16, про­чие — 18. Валуны встречаются в пределах 4 —6 % в разрезе пробуренных скважин и 10—12 % скважин от общего их ко­личества.






Читайте также:

  1. D. СОЦИОИДЕОЛОГИЧЕСКАЯ СИСТЕМА ВЕЩЕЙ И ПОТРЕБЛЕНИЯ
  2. I. Методические принципы физического воспитания (сознательность, активность, наглядность, доступность, систематичность)
  3. III.3. Система классификационных единиц
  4. MRPII–система как черный ящик
  5. VI. Система оценки результатов освоения Рабочей учебной программы
  6. XIX вв. Переход от механицизма к электродинамической
  7. А. Лупа. Б. Проекционный аппарат. В. Перископ. Г. Оптическая система глаза. Д. Любой из перечисленных в ответах А — Г систем.
  8. Аварии на коммунально-энергетических системах.
  9. Автоматизированная информационно-управляющая система в чрезвычайных ситуациях
  10. Автоматизированная система оказания услуг в режиме «МФЦ»
  11. Автоматизированная система оперативного управления подразделениями пожарной охраны (АСОУПО)
  12. Автоматизированная система управления гибкой производственной системой (АСУ ГПС)


Последнее изменение этой страницы: 2016-03-17; Просмотров: 171; Нарушение авторского права страницы


lektsia.com 2007 - 2017 год. Все права принадлежат их авторам! (0.095 с.) Главная | Обратная связь