Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Сортировка модели на топологическом ранге неопределенности

Применяемые различные математические методы, переключения между ними в процессе моделирования, требуют различных подходов к упорядочиванию элементов в подсистемах модели, иначе говоря, записи уравнений. При использовании явных методов традиционно первыми решают алгебраические уравнения, то есть фактически происходит упорядочивание системы уравнений по этому признаку. Предлагаемые адаптивные алгоритмы требуют построения списков на основании причинно-следственных взаимоотношений. Неявные методы, строго говоря, не предполагают упорядочивания элементов, но для повышения скорости расчетов целесообразно провести определенную сортировку. Порядок следования уравнений для всех этих методов различен.

Наиболее сложными и трудоемкими являются неявные методы. Поэтому целесообразно в качестве основного порядка следования уравнений в подсистемах принять порядок элементов, используемый для неявных методов. Порядок следования уравнений для остальных методов записывается в индексные массивы. При переключении с одного алгоритма на другой новые перестановки не производятся и порядок расположения элементов берется из соответствующего массива индексов.

Основные потери быстродействия при численном интегрировании по неявной схеме возникают при решении линейной системы уравнений. Для ускорения этого процесса предлагается на топологическом уровне представления модели расположить уравнения (номера элементов) так, чтобы ненулевые элементы в матрице Якоби (3.9) были расположены в заранее определенном порядке следования. Такое упорядочивание элементов позволяет использовать быстрые, специализированные алгоритмы решения получаемых на каждой итерации систем линейных уравнений.

Предлагаемый алгоритм [А14, А17, А24, А35, А44], схема которого представлена на рис. 3.7, предполагает приведение системы к форме, при которой образовывается ленточная матрица (рис. 3.8). Кроме того, необходимо отметить, что приведение к матрице специального вида происходит на уровне топологических моделей, а не на вычислительной стадии расчета.

На рис. 3.9-3.12 представлены результаты проведения предложенной сортировки для тестовой моделей и модели ТГУ-532, показаны матрицы смежности исходных и преобразованных моделей.

Алгоритм построен на основе традиционных обменных методов сортировок. В блоке 1 формируется булевская матрица ненулевых значений матрицы Якоби. Ненулевые элементы в матрице Якоби образуются за счет переменных, являющихся причиной и переменных, являющихся следствием каждого уравнения. Очевидно что это можно записать в матричной форме как:

,

где I - единичная матица, C - матрица смежности, т - символ транспонирования, A - матрица наличия ненулевых значений матрицы Якоби. Учитывая, что большинство элементов системы составляют элементы типа SISO (один вход и один выход), то матрица будет сильно разряжена.

Рис. 3.7. Блок схема алгоритма сортировки на топологических моделях

 

 

В блоке 2 создается копия матрицы A, на которой производятся перестановки (r). В блоках 3, 5 организуют основной цикл по переменной flag, устанавливаемый в блоке 4 в нуль. В матрице A, в блоке 5, определяется максимальное расстояние от ненулевого элемента до единичной диагонали lmax, рис. 2.8, и его номер i. Блоки 6,7,14 организуют цикл, где N размерность системы. Блок 9 производит обмен в матице r i и j элементов. При этом, в матрице r, определяется максимальное расстояние до ненулевого элемента (блок 9). Если оно больше определенного lmax, то присваивается новое значение lmax и запоминается при какой перестановке строк оно было достигнуто. Переменная flag устанавливается в 1 (блоки 10,11,12). В блоке 13 возвращается исходное значение матрице A. После завершения цикла (6,7,14) проверяется значение переменной flag. Если flag == 1 (истина) то производятся перестановки в СНГГ, и в соответствующих ему матричных формах представлений C,A (блоки 15,16). Если была произведена перестановка, то работа алгоритма возвращается на п. 4. Если перестановка не была произведена, то получено минимальное значение lmax и алгоритм завершает свою работу.

Подобные перестановки для упрощения расчетной формы модели были предложены Д. Стюардом. Предлагаемый в них алгоритм предполагает приведение вида матрицы к блочно треугольному виду. Это упрощает расчеты, но не позволяет без потери информации перейти на более быстрые методы, так как матрица остается почти треугольной, а не треугольной. Кроме того, формальный принцип образования диагональных блоков и отказ от учета влияния “отсоединенных частей”, может привести к потере существенной информации о поведении модели.

 

Рис. 3.8. Ленточная матрица

Рис. 3.9. Тестовая модель и ее исходная матрица смежности

 

 

Рис. 3.10. Иллюстрация сортировки и ленточная матрица отсортированной системы

 

Пример, показанный на рис. 3.10, иллюстрирует работу этого алгоритма. Он позволяет использовать для решения линеаризованной системы ленточные методы, за счет чего можно достигнуть увеличения скорости расчета. Эффект от применения оценки скорости вычислений для ленточных матриц можно оценить как:

,

где N - размерность системы, а 2*M+1 - ширина ленты (на рис. 3.8 M=lmax).

(Для примера, приведенного на рис. 3.10, в результате предлагаемой сортировки, представлены на рис. 3.11. Улучшения по сравнению с традиционными методами составят)

Для тестовой модели, которая представлена на рис. 3.9 в виде графа и матрицы смежности, предлагаемая сортировка порядка уравнений (номеров переменных) приводит матрицу к виду, показанному на рис. 3.10. Данное преобразование позволяет получить вычислительный эффект, связанный с увеличением скорости расчетов, в

Рис. 3.12. Матрица смежности исходной и отсортированной модели

 

Результаты сортировки показаны на рис. 3.12. Эффект от применения предлагаемой сортировки составил:

раз.

Предложенный алгоритм сортировки элементов приводит к получению матрицы Якоби известного вида, что позволяет использовать более быстрые алгоритмы решения систем нелинейных уравнений в процессе моделирования по неявной схеме. Данный подход отличается от встречаемых в литературе тем, что учитываются все переменные, без исключения части из них, соответствующих слабым связям. Кроме того, приведение к матрице специального вида происходит на уровне топологических моделей, а не на вычислительной стадии расчета. Эффект от применения такой сортировки, выполняемой однократно, получается на каждой итерации расчета для каждого момента времени.

 

 

Лекция №15.

 

Моделирование систем

Моделирование систем

Классификация видов моделирования систем. В основе моделирования лежит теория подобия, которая утверждает, абсолютное подобие может иметь место лишь при замене объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы достаточно хорошо отображало исследуемую сторону, строну функционирования объекта. Классификация видов моделирован ведена на рис. 2.7.

Рис. 2.7. Виды моделирования систем

По степени полноты модели они делятся на полные, непо­лные и приближенные.

Полные модели идентичны объекту во времени и пространстве. Для неполного моделирования эта иден­тичность не сохраняется. В основе приближенного моделирова­ния, лежит подобие, при котором некоторые стороны функци­онирования реального объекта не моделируются совсем.

В зависимости от характера изучаемых процессов в системе виды моделирования подразделяются на детермини­рованные и стохастические, статические и динамические, дискрет­ные, непрерывные и дискретно-непрерывные. Детерминирован­ное моделирование отображает процессы, в которых предполага­ется отсутствие случайных воздействий. Стохастическое модели­рование учитывает вероятностные процессы и события. Статичес­кое моделирование служит для описания поведения объекта в фи­ксированный момент времени, а динамическое — для исследова­ния объекта во времени. Дискретное, непрерывное и дискретно-непрерывное моделирования используются для описания процес­сов, имеющих изменение во времени. При этом оперируют ана­логовыми, цифровыми и аналого-цифровыми моделями.

В зависимости от формы представления объекта мо­делирование классифицируется на мысленное и реальное. Мыс­ленное моделирование применяется тогда, когда модели не реа­лизуемы в заданном интервале времени либо отсутствуют усло­вия для их физического создания (например, ситуации микроми­ра).

Мысленное моделирование реализуется в виде нагляд­ного, символического и математического. При наглядном мо­делировании на базе представлений человека о реальных объектах создаются наглядные модели, отображающие явления и процессы, протекающие в объекте. В основу гипотетичес­кого моделирования закладывается гипотеза о закономер­ностях протекания процесса в реальном объекте, которая отража­ет уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изуча­емого объекта. Этот вид моделирования используется, когда знаний об объекте недостаточно для построения формальных моделей. Аналоговое моделирование основывается на при­менении аналогий различных уровней. Для достаточно простых объектов наивысшим уровнем является полная аналогия. С усло­жнением системы используются аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта. Макетирование при­меняется, когда протекающие в реальном объекте процессы не поддаются физическому моделированию либо могут предше­ствовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, обычно базирующиеся на причинно-следственных связях между явлени­ями и процессами в объекте.

Символическое моделирование представляет собой ис­кусственный процесс создания логического объекта, который за­мещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов. В основе языкового моделирования лежит некоторый тезаурус, который образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Между тезаурусом и обычным словарем имеются принципиальные различия..

Тезаурус — сло­варь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову может соответствовать неско­лько понятий. Если ввести условное обозначение отдельных по­нятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с по­мощью знаков отображать набор понятий — составлять отдель­ные цепочки из слов и предложений. Используя операции объеди­нения, пересечения и дополнения теории множеств, можно в от­дельных символах дать описание какого-то реального объекта.

 

Последнее изменение этой страницы: 2016-03-15; Просмотров: 52; Нарушение авторского права страницы


lektsia.com 2007 - 2017 год. Все права принадлежат их авторам! (0.082 с.) Главная | Обратная связь