Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Параметры, достоинства и недостатки жидкокристаллических индикаторов



Время релаксации - время, необходимое для возвращения молекул жидкого кристалла в исходное состояние после выключения поля. Оно определяется поворотом молекул и составляет 30-50 мс. Такое время достаточно для работы различных индикаторов, но на несколько порядков превышает время, необходимое для работы компьютерного монитора.

Время релаксации резко зависит от температуры жидкокристаллического индикатора. Именно временем релаксации определяется минимальная температура использования жидкокристаллических индикаторов. Время релаксации современных жидкокристаллических индикаторов при температуре -25°C достигает нескольких секунд. Это время смены информации неприемлемо для большинства практических приложений.

Контрастность изображения. При нормальной температуре контрастность изображения достигает нескольких сотен. При повышении температуры контрастность изображения падает и при температуре порядка +50°C изображение становится практически неразличимым.

Угол обзора жидкокристаллического индикатора существенно зависит от скважности динамического режима индикации. Чем больше скважность - тем меньше получается угол обзора индикатора.

Достоинства ЖК-индикаторов заключаются в следующем:

  • малая потребляемая мощность (110 мкВт/см2);
  • работа при высоком уровне внешней освещенности;
  • простота конструкции и технологии изготовления;
  • низкая стоимость, низкое рабочее напряжение.

К основным недостаткам ЖК-индикаторов следует отнести узкий диапазон рабочих температур (от -10 до +60° С), длительные переходные процессы, к тому же зависящие от температуры.

В современных жидкокристаллических компьютерных мониторах используется специальный метод формирования статического формирования изображения при динамическом способе его подачи на дисплей. Это TFT технология. При использовании этой технологии около каждого элемента изображения формируется запоминающий конденсатор и ключевой транзистор, который подключает этот конденсатор к цепям формирования изображения только в момент подачи информации именно для этого элемента изображения (Параметры жидкокристаллических индикаторов).

 

 

Основы микроэлектроники

Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы: дискретная электроника электровакуумных приборов, дискретная электроника полупроводниковых приборов, интегральная электроника микросхем (микроэлектроника), интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника).

Разрабатываемые сейчас сложные системы содержат десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, микроминиатюризация электронных компонентов и комплексной миниатюризации аппаратуры. Все эти проблемы успешно решает микроэлектроника.

Разработка любых ИМС представляет собой довольно сложный процесс, требующий решения разнообразных научно-технических проблем. Вопросы выбора конкретного технологического воплощения ИМС решаются с учетом особенностей разрабатываемой схемы, возможностей и ограничений, присущих различным способам изготовления, а также технико-экономического обоснования целесообразности массового производства.

По своим конструктивным и электрическим характеристикам полупроводниковые и гибридные интегральные схемы дополняют друг друга и могут одновременно применяться в одних и тех же радиоэлектронных комплексах.

Современная микроэлектроника базируется на интеграции дискретных элементов электронной техники, при которой каждый элемент схемы формируется отдельно в полупроводниковом кристалле. При этом в основе создания, ИМС лежит принцип элементной (технологической) интеграции, сопровождающейся микроминиатюризацией элементов (активных и пассивных) микросхемы. В ИМС можно выделить области, представляющие собой активные (диоды, транзисторы) и пассивные (резисторы, конденсаторы, катушки индуктивности) элементы.

Сложными становятся проблемы топологии и теплоотвода. Поэтому в отдаленной перспективе интегральная микроэлектроника уже не будет полностью удовлетворять разработчиков сложной радиоэлектронной аппаратуры.

Функциональная микроэлектроника предполагает принципиально новый подход, позволяющий реализовать определенную функцию аппаратуры без применения стандартных базовых элементов, основываясь непосредственно на физических явлениях в твердом теле. В этом случае локальному объекту твердого тела придаются такие свойства, которые требуются для выполнения данной функции, и промежуточный этап представления желаемой функции в виде эквивалентной электрической схемы не требуется.

Таким образом, функциональная микроэлектроника охватывает вопросы получения специальных сред с наперед заданными свойствами и создания различных электронных устройств методом физической интеграции, т.е. использования таких физических принципов и явлений, реализация которых позволяет получить приборы со сложным схемотехническим или системотехническим функциональным назначением (Большая Энциклопедия Нефти Газа).

Микросхемы

Интегральная микросхема - ИС, ИМС, м/сх (англ. integrated circuit, IC, microcircuit).

Чип, микрочип (англ. microchip, silicon chip, chip) - тонкая пластинка - микроэлектронное устройство (электронная схема произвольной сложности), изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки (Большой Энциклопедический словарь).

Рис.8.1. Полупроводниковый кристалл после разварки выводов

Источник: http: //www.ljplus.ru/img4/t/h/threestonebusts/8048.JPG

На сегодняшний день большая часть микросхем изготавливается в корпусах для поверхностно го монтажа.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС, чипом) - ИС, заключённую в корпус. В то же время выражение чип-компоненты означает «компоненты для поверхностного монтажа» (в отличие от компонентов для пайки в отверстия на плате).

Рис.8.2. Плата с поверхностым монтажем

Технология изготовления

Полупроводниковая микросхема - все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле ( кремния, германия, арсенида галлия, оксид гафния).

Рис.8.3. Полупроводниковая микросхема

Источник: http: //www.thg.ru/technews/images/20050125-chip.jpg

Полупроводниковая микросхема была изобретена в 1959 году американскими инженерами Джеком Килби и будущим основателем корпорации Intel Робертом Нойсом.

Подложки полупроводниковых микросхем обычно выполняют из монокристаллического кремния p-типа. Изготовление электронно-дырочных переходов полупроводниковых ИМС осуществляют обычно посредством эпитаксиального наращивания или способом диффузионно-планарной технологии.

Планарная технология подразумевает создание деталей и электрических соединений в подложке в одной плоскости. Эпитаксиальное наращивание заключено в напылении разогретого полупроводника на некоторые участки поверхности подложки.

Диффузионная технология состоит в проникновении разогретых газообразных примесей в отведённые для этого участки подложки. В результате возникают многослойные образования, каждый слой которых обладает заданным типом проводимости. Резисторы, конденсаторы и прочие пассивные компоненты полупроводниковых ИМС обладают много большими габаритами, чем активные компоненты, такие как транзисторы. С целью минимизации размеров диоды в полупроводниковых ИМС предпочитают заменять транзисторами в диодном включении (Москатов Е. А., 2010).

 


Поделиться:



Популярное:

  1. SWOT-анализ и недостатки мотивационного механизма в ООО «Рост»
  2. Вопрос 10: Бихевиоризм (предмет исследования, основной метод исследования, образ человека, достоинства и ограничения данного направления)
  3. Генераторы синусоидальных колебаний на основе моста Вина: устройство, принцип работы, особенности фазосдвигающих цепей, расчётные соотношения. Достоинства и недостатки.
  4. Генераторы треугольных колебаний: назначение, область применения, вывод расчётных соотношений для периода генерируемых колебаний. Достоинства и недостатки.
  5. Глава XXII. Преступления против свободы, чести и достоинства личности
  6. Дайте понятие структуры управления. Охарактеризуйте преимущества и недостатки линейной структуры управления.
  7. Достоинства и недостатки железобетона.
  8. Достоинства и недостатки линейно-функциональных структур
  9. Достоинства и недостатки смазок
  10. Достоинства и ограничения методики.
  11. Достоинства магнитомягких измерительных механизмов
  12. Достоинства, позитивные стороны флегматиков


Последнее изменение этой страницы: 2016-03-17; Просмотров: 2090; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь