Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


КЛАССИФИКАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ



Имеются следующие классификации лекарственных средств:

Классификация по алфавиту. В основу этой классификации положен принцип размещения наименований лекарственных средств в алфавитном порядке (на рус­ском и латинском языках).

Химическая классификация. В основе ее лежит химическая структура лекар­ственных веществ. Например, производные имидазола: бендазол, клотримазол, метронидазол; производные фенотиазина: хлорпромазин, этапиразин; производ­ные метилксантина: кофеин, теофиллин, теобромин. Близкие по химической структуре лекарственные вещества могут оказывать на организм разные эффекты.

Фармакологическая классификация. Она является комбинированной. Соглас­но этой классификации лекарственные средства делятся на разряды — большие блоки, соответствующие системе организма, на которую действует лекарствен­ное средство, например лекарственные средства, действующие на сердечно-со­судистую систему, центральную нервную систему и т.д. Разряды подразделяются на классы. Класс определяет характер фармакологического действия лекарствен­ного средства. Например, разряд «Лекарственные средства, действующие на сер­дечно-сосудистую систему» подразделяется на классы: «Антиаритмические сред­ства», «Кардиотонические средства», «Антигипертензивные (гипотензивные) средства» и др. Классы делятся на группы. Например, класс «Антиаритмические средства» делится на 4 группы: блокаторы натриевых каналов, препараты, замед­ляющие реполяризацию, бета-адреноблокаторы, блокаторы кальциевых каналов. Группы делятся на подгруппы. Например, группа бета-адреноблокаторов делится на неселективные и селективные. Таким образом, фармакологическая классифи­кация имеет многоступенчатый характер.

Фармакотерапевтическая классификация. В ее основу положены заболевания, при которых применяются конкретные лекарственные средства. Например, «Средства для лечения язвенной болезни желудка и двенадцатиперстной киш­ки», «Средства для лечения бронхиальной астмы». В фармакотерапевтические группы лекарственных средств могут входить препараты, относящиеся к разным разрядам, классам и группам. Фармакотерапевтической классификацией широ­ко пользуются врачи.

Классификация CAS (Chemical Abstracts Service). Представляет собой однознач­ный идентификатор химических субстанций, где определенной химической струк­туре присвоен регистровый номер. Например, номер CAS азитромицина 83905-01-5. Регистровый номер лекарственных веществ включен в фармацевтические и медицинские справочники всего мира.


В этом разделе приводятся сведения об общих зако­номерностях фармакокинетики и фармакодинамики ле­карственных средств. Фармакокинетика — это вса­сывание, распределение в организме, депонирование, биотрансформация (метаболизм) и выведение лекар­ственных веществ (ЛВ). Основными понятиями фарма­кодинамики являются фармакологические эффекты, механизмы действия, локализация действия и виды дей­ствия ЛВ.

Отдельно рассматриваются факторы, влияющие на фармакокинетику и фармакодинамику лекарственных средств, а также общие закономерности побочного и ток­сического действия лекарственных средств. Кроме того, обсуждаются основные виды лекарственной терапии.

Глава 1

ФАРМАКОКИНЕТИКА

Фармакокинетические процессы — всасывание, рас­пределение, депонирование, биотрансформация и выве­дение - связаны с проникновением ЛВ через биологи­ческие мембраны (в основном через цитоплазматические мембраны клеток). Существуют следующие способы про­никновения веществ через биологические мембраны: пас­сивная диффузия, фильтрация, активный транспорт, об­легченная диффузия, пиноцитоз (рис. 1.1).

Пассивная диффузия. Путем пассивной диффузии ве­щества проникают через мембрану по градиенту концен­трации (если концентрация вещества с одной стороны мембраны выше, чем с другой, вещество перемещается через мембрану от большей концентрации к меньшей). Этот процесс не требует затраты энергии. Поскольку био­логические мембраны в основном состоят из липидов, таким способом через них легко проникают вещества, растворимые в липидах и не имеющие заряда, т.е. л и -пофильные неполярные вещества. И напро­тив, гидрофильные полярные соединения непосредствен­но через липиды мембран практически не проникают.



Если Л В являются слабыми электролитами - слабыми кислотами или слабы­ми основаниями, то проникновение таких веществ через мембраны зависит от степени их ионизации, так как путем пассивной диффузии через двойной липид-ный слой мембраны легко проходят только неионизированные (незаряженные) молекулы вещества.

Степень ионизации слабых кислот и слабых оснований определяется:

1) значениями рН среды;

2) константой ионизации (Ка) веществ.

Слабые кислоты в большей степени ионизированы в щелочной среде, а сла­бые основания — в кислой. Ионизация слабых кислот

НА ^ Н+ + А~

щелочная среда

Ионизация слабых оснований

ВН+^ В + Н+

кислая

среда

Константа ионизации характеризует способность вещества к ионизации при определенном значении рН среды. На практике для характеристики способности веществ к ионизации используют показатель рКа, который является отрицатель­ным логарифмом Ka(-lg Ka). Показатель рКа численно равен значению рН среды, при котором ионизирована половина молекул данного вещества. Значения рКа слабых кислот, так же как и слабых оснований, варьируют в широких пределах. Чем меньше рКа слабой кислоты, тем легче она ионизируется даже при относи­тельно низких значениях рН среды. Так, ацетилсалициловая кислота (рКа= 3, 5) при рН 4, 5 ионизирована более чем на 90%, в то же время степень иониза­ции аскорбиновой кислоты (рКа=11, 5) при том же значении рН составляет доли % (рис. 1.2). Для слабых оснований существует обратная зависимость. Чем выше рКа слабого основания, тем в большей степени оно ионизировано даже при отно­сительно высоких значениях рН среды.

Степень ионизации слабой кислоты или слабого основания можно рассчитать по формуле Гендерсона-Гассельбальха:



Эта формула позволяет определить, какова будет степень проникновения ЛВ (слабых кислот или слабых оснований) через мембраны, разделяющие среды орга­низма с различными значениями рН, например при всасывании Л В из желудка (рН 2) в плазму крови (рН 7, 4).

Пассивная диффузия гидрофильных полярных веществ возмож­на через водные поры (см. рис. 1.1). Это белковые молекулы в мембране клеток, проницаемые для воды и растворенных в ней веществ. Однако диаметр водных пор невелик (порядка 0, 4 нм) и через них могут проникать только небольшие гид­рофильные молекулы (например, мочевина). Большинство гидрофильных лекар­ственных веществ, диаметр молекул которых составляет более 1 нм, через водные поры в мембране клеток не проходят. Поэтому большинство гидрофильных ле­карственных веществ не проникают внутрь клеток.

Фильтрация — этот термин используют как по отношению к проникновению гидрофильных веществ через водные поры в мембране клеток, так и по отноше­нию к их проникновению через межклеточные промежутки. Фильт­рация гидрофильных веществ через межклеточные промежутки происходит под гидростатическим или осмотическим давлением. Этот процесс имеет существен­ное значение для всасывания, распределения и выведения гидрофильных Л В и зависит от величины межклеточных промежутков.

Так как межклеточные промежутки в различных тканях не одинаковы по ве­личине, гидрофильные ЛВ при различных путях введения всасываются в неоди­наковой степени и распределяются в организме неравномерно. Например, про-


межутки между эпителиальными клетками слизистой оболочки кишечника неве­лики, что затрудняет всасывание гидрофильных Л В из кишечника в кровь.

Промежутки между эндотелиальными клетками сосудов периферических тка­ней (скелетных мышц, подкожной клетчатки, внутренних органов) имеют доста­точно большие размеры (порядка 2 нм) и пропускают большинство гидрофиль­ных Л В, что обеспечивает достаточно быстрое проникновение Л В из тканей в кровь и из крови в ткани. В то же время в эндотелии сосудов мозга межклеточные промежутки отсутствуют. Эндотелиальные клетки плотно прилегают к друг дру­гу, образуя барьер (гематоэнцефалический барьер), препятствующий проникно­вению гидрофильных полярных веществ из крови в мозг (рис. 1.3).

Активный транспорт осуществляется с помощью специальных транспортных систем. Обычно это белковые молекулы, которые пронизывают мембрану клетки (см. рис. 1.1). Вещество связывается с белком-переносчиком с наружной сторо­ны мембраны. Под влиянием энергии АТФ происходит изменение конформации белковой молекулы, что приводит к уменьшению силы связывания между пере­носчиком и транспортируемым веществом и высвобождению вещества с внут­ренней стороны мембраны. Таким образом в клетку могут проникать некоторые гидрофильные полярные вещества.

Активный транспорт веществ через мембрану обладает следующими характе­ристиками: специфичностью (транспортные белки избирательно связывают и пе-


реносят через мембрану только определенные вещества), насыщаемостью (при связывании всех белков-переносчиков количество вещества, переносимого че­рез мембрану, не увеличивается), происходит против градиента концентрации, требует затраты энергии (поэтому угнетается метаболическими ядами).

Активный транспорт участвует в переносе через клеточные мембраны таких ве­ществ, необходимых для жизнедеятельности клеток, как аминокислоты, сахара, пиримидиновые и пуриновые основания, железо, витамины. Некоторые гидрофиль­ные лекарственные вещества проникают через клеточные мембраны с помощью активного транспорта. Эти Л В связываются с теми же транспортными системами, которые осуществляют перенос через мембраны вышеперечисленных соединений.

Облегченная диффузия — перенос веществ через мембраны с помощью транс­портных систем, который осуществляется по градиенту концентрации и не требу­ет затраты энергии. Так же, как активный транспорт, облегченная диффузия — это специфичный по отношению к определенным веществам и насыщаемый процесс. Этот транспорт облегчает поступление в клетку гидрофильных полярных веществ. Таким образом через мембрану клеток может транспортироваться глюкоза.

Кроме белков-переносчиков, которые осуществляют трансмембранный перенос веществ внутрь клетки, в мембранах многих клеток есть транспортные белки — Р-гликопротеины, способствующие удалению из клеток чужеродных соединений. Р-гликопротеиновый насос обнаружен в эпителиальных клетках кишечника, в эндотелиальных клетках сосудов мозга, образующих гематоэнцефалический ба­рьер, в плаценте, печени, почках и других тканях. Эти транспортные белки пре­пятствуют всасыванию некоторых веществ, их проникновению через гистогема-тические барьеры, влияют на выведение веществ из организма.

Пиноцитоз (от греч. pino — пью). Крупные молекулы или агрегаты молекул со­прикасаются с наружной поверхностью мембраны и окружаются ею с образова­нием пузырька (вакуоли), который отделяется от мембраны и погружается внутрь клетки. Далее содержимое пузырька может высвобождаться внутри клетки или с другой стороны клетки наружу путем экзоцитоза.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-15; Просмотров: 973; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.025 с.)
Главная | Случайная страница | Обратная связь