Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Пространственно-временной интервал.



Величиной, характеризующей пространственно-временные отношения в релятивистской механике, и которая не зависит от преобразования систем отсчета, является так называемый пространственно-временной интервал. Пространственно-временной интервал (или просто интервал) между событиями 1 и 2 – это величина, определяемая формулой:

Пространственный интервал для какого-то конкретного объекта имеет одно и то же значение во всех инерциальных системах отсчета. Он является инвариантом по отношению к преобразованиям Лоренца. Пространственно-временной интервал играет в релятивистской механике ту же роль, что и пространственный интервал в классической механике.

Расстояния между точками и время между событиями, взятые отдельно друг от друга, относительны; они меняются при переходе от одной системы отсчета к другой. Но совместно в составе интервала они образуют абсолютную пространственно-временную характеристику событий. В этом проявляется взаимосвязь пространства и времени, продемонстрированная теорией относительности. Связь эта состоит в том, что при переходе между системами отсчета определенному изменению пространственного интервала между точками 1 и 2, в которых происходят некоторые события, соответствует не какое угодно, а определенное изменение времени между событиями в этих точках; и эти величины согласованы формулой интервала .

Формулы релятивисткой динамики.

Зависимость массы от скорости. Масса движущихся релятивистских частиц зависит от их скорости:

m0 - масса неподвижного тела, [кг]; m - масса того же тела, движущегося со скоростью υ, [кг];

с — скорость света в ваку­уме.

Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.

Импульс тела, движущегося.

- импульс тела, движется, [(кг · м)/c]; - сила, действующая на тело, [Н].

 

При υ=c получим, что со скоростью, равной скорости света может двигаться только тело, имеющее массу, равную нулю. Это говорит о предельном характере скорости света для материальных тел.

Закон взаимосвязи массы и энергии

ΔЕ - величина изменения энергии, [Дж], 1еВ = 1,6 · 10-19 Дж;

Δm - величина изменения массы, [кг].

 

Гипотеза Эйнштейна

E0 - энергия покоя, [Дж]; m0 - масса покоя, [кг]; Е - полная энергия, [Дж]; m - масса, [кг].

Если изменяется энергия системы, то изменяется и ее масса: . Всякое изменение любой энергии (тела, частицы, системы тел) на сопровождается пропорциональным изменением массы на Δm.

Нельзя говорить, что при этом масса переходит в энергию. В действительности энергия переходит из одной формы (механической) в другие (электромагнитную и ядерную), но любое превращение энергии сопровождается превращением массы.

 

Основные положения молекулярно-кинетической теории.

Молекулярно-кинетической теориейназывают учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.

В основе молекулярно-кинетической теории лежат три основных положения:

1.Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

2.Атомы и молекулы находятся в непрерывном хаотическом движении.

3.Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Модель идеального газа.

Для объяснения свойств вещества в газообразном состоя­нии используется модель идеального газа.В этой модели газ рас­сматривается в виде совокупности молекул — шариков очень малых размеров и почти не взаимодействующих между собой, т.е. при рассмотрении законов идеального газа пренебрегают собственным объемом молекул (по сравнению с объемом сосуда, в котором он находится) и силами их взаимного притяжения; при соударениях молекул друг с другом и со стенками сосуда действуют силы упругого отталкивания. Идеального газа в при­роде не существует — это упрощенная модель реального газа. Реальный газ становится близким по свойствам к идеальному, когда он достаточно нагрет и разрежен. Некоторые газы, например, воздух, кислород, азот, даже при обычных условиях (комнатная температуре и атмосферное давление) мало отлича­ются от идеального газа. Особенно близки по своим свойствам к идеальному газу гелий и водород.

Вывод уравнения Клаузиуса.

Для превращения жидкости в пар при постоянной температуре необходимо сообщить жидкости дополнительное количество теплоты q, а при обратном процессе конденсации пара эта теплота поглощается. Эта дополнительная теплота называется скрытой теплотой парообразования, в процессе испарения она расходуется на преодоление сил межмолекулярного притяжения в жидкости.

Давление насыщенного пара зависит от температуры. Действительно, при повышении температуры увеличивается число испаряющихся молекул, то есть, чтобы пар остался равновесным, должно увеличиться и число влетающих из пара в жидкость молекул, а для этого должны увеличиться плотность и давление пара.

Для получения зависимости давления насыщенного пара от температуры рассмотрим замкнутый процесс – цикл (рис. 2).

Рис. 2

Пусть при какой-то температуре Т жидкость полностью превращается в пар, оставаясь все время в равновесии с ним. Затем полученный пар охлаждается адиабатически до температуры
Т – dТ, после чего пар снова превращается в жидкость при этой температуре, причем пар опять находится в состоянии насыщения. Полученную жидкость нагревают адиабатически до начальной температуры Т.

Таким образом, наш замкнутый процесс представляет из себя равновесный цикл Карно, состоящий из двух изотерм при температурах Т и Т – dТ и двух адиабат. Коэффициент полезного действия цикла Карно равен

,

где в этой формуле Т1 – температура нагревателя, а Т2 температура холодильника. В нашем случае – это Т и (Т – dT). Таким образом, к. п. д. цикла .

С другой стороны, к. п. д. любого цикла равен отношению работы, совершенной рабочим телом за цикл, к полученному количеству теплоты. Работа за цикл равна площади внутри кривой, изображающей его в переменных давление – объем. Таким образом, работа равна dp (V2 – V1), где dp – изменение давления насыщенного пара при изменении температуры на величину dT, а V1 и V2 – соответственно объем данного количества вещества в жидком и газообразном состоянии. За цикл вещество получило количество теплоты q12, равное скрытой теплоте испарения данного количества вещества. Таким образом, к. п. д. цикла

.

Приравнивая эти выражения для к. п. д, получаем:

.

Эта формула носит название уравнения Клапейрона–Клаузиуса. Оно связывает изменения температуры и давления при переходе из первого состояния (жидкость) во второе состояние (газ). При этом скрытая теплота перехода q12 положительна. Отметим, что если переход происходит из газа (сост. 1) в жидкость (сост.2), то скрытая теплота q12 отрицательна.






Читайте также:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 464; Нарушение авторского права страницы


lektsia.com 2007 - 2017 год. Все права принадлежат их авторам! (0.095 с.) Главная | Обратная связь