Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понятие о температуре и температурных шкалах.



Манометрические термосистемы.

 

Жидкостные манометрические термометры

Жидкостные манометрические термометры находят небольшое распространение. Они используются для измерения температур в интервале от -50 до 300 °С. Нижний предел измерения выбирается из интервала от -50 до 100 °С, верхний — из интервала от 50 до 300 °С, диапазон измерения колеблется в пределах от 50 до 300 °С. В качестве термометрических жидкостей используется жидкость ПМС-5 при низких температурах, при высоких — жидкость ПМС-10. Рабочее вещество жидкостных манометрических термометров практически несжимаемо. Поэтому изменение объема рабочей жидкости в термобаллоне при изменении температуры соответственно диапазону измерения вызовет такое увеличение давления в термосистеме, при котором манометрическая пружина изменит свой внутренний объем соответственно изменению объема жидкости. При этом давление зависит от жесткости пружины и для различных манометрических пружин может быть различным.

В жидкостных манометрических термометрах погрешность, вызванная изменением барометрического давления, как правило, отсутствует, так как давление в системе значительно. Погрешность, вызываемая изменением температуры окружающей среды, имеет место и в жидкостных манометрических термометрах. Для ее уменьшения применяют различные способы температурной компенсации.

В жидкостных манометрических термометрах может иметь место гидростатическая погрешность, возникающая при различных уровнях расположения термобаллона и измерительного прибора. Для снижения возможных гидростатических погрешностей длину капилляра уменьшают до 10м. Жидкостные термометры выпускаются показывающими класса 1 или 1, 5.

 

 

Газовые манометрические термометры.

Газовые манометрические термометры применяются для измерения температур в интервале от -200 до 600 °С. Нижний предел измерения выбирается из интервала от -200 до 200 °С, верхний — из интервала от 50 до 600 °С, диапазон измерения находится в интервале от 100 до 700 °С. В качестве наполнителя используется гелий (при низких температурах), азот (при средних температурах) или аргон (при высоких температурах).

Реальное уравнение шкалы несколько отличается от линейного, однако это отклонение незначительно и можно считать, что шкалы газовых манометрических термометров являются равномерными.

Изменение температуры окружающего воздуха влияет на расширение рабочего вещества в капилляре и манометрической пружине, что вызывает изменение давления в термосистеме и соответствующее изменение показаний термометра. Для уменьшения этого влияния уменьшают отношение внутреннего объема пружины и капилляра к объему термобаллона, для чего увеличивают длину термобаллона и его диаметр.

Класс точности газовых термометров 1 или 1, 5. Они могут выпускаться показывающими или самопишущими, могут снабжаться дополнительными устройствами.

Биметаллические и дилатометрические термометры.

Биметаллические термометры.

Действие биметаллических и дилатометрических термометров основано на термометрическом свойстве теплового расширения различных твердых тел.

В биметаллических термометрах в качестве чувствительного элемента используют пластинки или ленты, состоящие из двух слов разнородных металлов, характеризуемых различными коэффициентами теплового расширения. Чаще всего применяют медно-цинковый сплав — латунь (70% Cu + 30% Zn) и сплав железа с никелем —инвар (64% Fe + 36% Ni), с существенно различными коэффициентами теплового расширения: порядка 0, 000019 град-1 для латуни и 0, 000001 град-1 для инвара. При изменении температуры биметаллической пластинки она деформируется (рис.4) вследствие неодинакового расширения отдельных слоев пластинки. Если закрепить неподвижно один конец пластинки, то по перемещению другого конца, соединенного с указателем, можно судить об изменении температуры.

Чувствительные элементы биметаллических термометров обычно выполняют в форме спиралей, соединяемых со стрелочным указателем. Такие термометры класса точности 2, 0 или 2, 5 применяют для измерения температуры атмосферного воздуха.

 

 

Металлические датчики.

Достоинством металлических датчиков является высокая линейность и взаимозаменяемость, т.е. возможность замены вышедшего из строя датчика на аналогичный без повторной калибровки системы. Взаимозаменяемость достигается благодаря малому технологическому разбросу сопротивлений датчиков (разброс сопротивлений составляет от ±0, 15 °С при температуре 0 °С для медных датчиков класса " А" до ±0, 5 °С для датчиков класса " С"

Медные датчики используются для измерения температуры в диапазоне от -200 °С до +200 °С, платиновые - в диапазоне от -260 °С до +850 °С, никелевые - от -60 °С до +180 °С

Никелевые термопреобразователи имеют высокую чувствительность, платиновые - высокую стабильность (неизменность показаний с течением времени), медные - низкую цену и наилучшую линейность зависимости сопротивления от температуры.

Датчик температуры, основанный на зависимости сопротивления от температуры, состоит из термочувствительного элемента и защитной оболочки. Чувствительный элемент (сенсор) может быть изготовлен в виде катушки с бифилярной намоткой (безиндуктивная намотка сдвоенным проводом) или проводникового слоя металла, нанесенного на диэлектрическое основание.

 

Полупроводниковые датчики.

 

Применение.

Термопреобразователи сопротивления, благодаря высокой надежности и точности измерений, получили широкое применение в различных сферах деятельности и производства. Они используются для таких целей, как:

непрерывный контроль температурного режима в помещениях различного назначения, зданиях, производственных цехах. Например, для контроля температуры в вентиляционной системе, для поддержания необходимого температурного режима в хранилищах и на складах;

постоянный контроль температурного режима рабочей среды (масла, воды, пара и т.п.), необходимый для поддержания технологических условий, что обеспечивает эффективность и безопасность работы системы. Пример - работа котельного оборудования, где термопреобразователи являются важной частью системы;

контроль и поддержание нужной температуры в системах гидравлики;

контроль и поддержание температуры на видах оборудования, в которых температура является важным технологическим фактором (холодильные камеры, теплообменники, сушилки, печи и т.д.).

 

Оптические пирометры.

Радиационные пирометры.

Диапазон измерения: от 900 до 1800° С.

Понятие о температуре и температурных шкалах.

Температурой называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетикой энергии поступательного движения молекул. Отсюда температурой называют уловную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.

Все предлагаемы температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связанно с температурой t

t=kE+D

где k – коэффициент пропорциональности;

E – термометрическое свойство;

D – постоянная, определяющая начало отсчета шкалы.

Принимая для двух постоянных точек определенные значения температур, можно вычислить постоянные k, D и на этой основе построить температурную шкалу. При изменении температуры коэффициент k меняется, при чем различно для разных термометрических веществ. Поэтому термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

В начале XX века широко применялись шкалы Цельсия и Реомюра, а в научных работах – также шкалы Кельвина и водородная. Пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Потому в 1933 году было принято решение о введении Международной температурной шкалы (МТШ).

Опыт применения МТШ показал необходимость внесения в нее ряда уточнений и дополнений, чтобы по возможности максимально приблизить ее к термодинамической шкале. Поэтому МТШ была пересмотрена и приведена в соответствие с состоянием знаний того времени. В 1960 году было утверждено новое “Положение о международной практической температурной шкале” 1948 года.

 

2. Жидкостные стеклянные термометры.

Принцип действия термометров основан на объемном расширении жидкости, заключенной в закрытом стеклянном резервуаре. Резервуар соединяется с капилляром, имеющим малый внутренний диаметр. При нагревании резервуара жидкость увеличивается в объеме и поднимается вверх по капилляру. По высоте столбика жидкости в капилляре можно судить об измеряемой температуре. Чем тоньше капилляр, по сравнению с резервуаром, тем чувствительнее термометр.

Рабочей жидкостью в термометрах служат обычно ртуть и органические жидкости. Ртутно-стеклянные термометры используются для измерения температуры в пределах от —30 до +500°С Термометры с органическими жидкостями называются низкотемпературными, в них применяют этиловый спирт до —130°С; толуол до —90° С; петролейный эфир до —130° С и пентан до —190° С.

Ртутные стеклянные термометры разделяют на палочные и с вложенной стеклянной шкалой. Палочный термометр представляет собой толстостенную капиллярную трубку из термостойкого стекла или кварца, на который нанесены деления шкалы. При наблюдении сквозь толщу стекла капилляр представляется значительно увеличенным и столбик жидкости хорошо виден, несмотря на очень малый действительный размер капилляра. Резервуар со ртутью у палочных термометров имеет наружный диаметр, одинаковый с наружным диаметром капиллярной трубки. Палочные термометры обладают высокой точностью и применяются в основном для лабораторных измерений.

Стеклянные термометры с вложенной шкалой отличаются тем, что капиллярная трубка имеет небольшой наружный диаметр, а деления шкалы нанесены на плоскую пластинку из молочного стекла, расположенную сзади капиллярной трубки. Шкала и капилляр заключены в стеклянную оболочку, припаянную к резервуару.

Термометр с ртутным заполнением может быть снабжен электрическими контактами, которые замыкаются ртутными столбиками. Такие термометры называются контактными или термосигнализаторами. Один из контактов впаян в нижней точке капилляра и всегда соприкасается с ртутью. Этот контакт обычно выполнен из платины, так как платина имеет такой же температурный коэффициент, что и термометрическое стекло.

Другие контакты впаивают в капилляр на определенных отметках шкалы или контакт изготавливают подвижным. В качестве подвижного рабочего контакта термосигнализатора применяют тонкую вольфрамовую проволоку и располагают ее внутри капилляра. Контакт перемещается с помощью передвигающейся по винту овальной гайки, заключенной в овальную трубку. Винт вращается подковообразным постоянным магнитом, который установлен на колпачке в верхней части термометра.

Шкала термометра справедлива, когда глубина его погружения равна высоте столбика измерительной жидкости. При этом жидкость, находящаяся в резервуаре и капилляре, имеет температуру измеряемой среды. Если столбик жидкости выступает над уровнем погружения термометра, то температура выступающей части будет отличаться от температуры измеряемой среды: Следовательно, выступающий столбик дополнительно удлиняется или укорачивается в зависимости от температуры окружающей среды.

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 1248; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.03 с.)
Главная | Случайная страница | Обратная связь