Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Термопластичные и термореактивные пластмассы.



Из пластмасс сейчас изготовляют шкивы, крышки, фланцы, трубопроводы и их арматуру, электроизолирующие корпуса и детали приборов, стойкие против коррозии сосуды, детали подшипников качения, бесшумные зубчатые и червячные колеса и многие другие изделия.

Школьники и студенты постоянно сталкиваются на занятиях с наглядными пособиями, чертежными и письменными принадлежностями, а также с макетами и моделями из пластмасс.

Пластмассами называют вещества органического происхождения с большой молекулярной массой, состоящие из смол, наполнителей и небольших добавок: пластификаторов и красителей. В определенных условиях и сочетании эти полимерные материалы способны приобретать пластичность.

В зависимости от реагирования на нагрев различают термопластичные (термопласты) и термореактивные (реакто-пласты) пластмассы. Термопласты при нагревании размягчаются, а при охлаждении твердеют. Реактопласты при повторном нагревании (после изготовления) теряют способность размягчаться, плавиться и растворяться, т. е. не могут подвергаться вторичной переработке, связанной с нагреванием.

Пластмассы отличаются химической стойкостью по отношению к агрессивным средам, и в частности высокой антикоррозийностью, обладают хорошими электроизоляционными и теплоизоляционными свойствами, имеют красивый внешний вид и легко обрабатываются.

Однако пластмассы, как и большинство веществ органического происхождения, подвержены старению (ухудшению механических свойств в процессе продолжительной эксплуатации) и обладают сравнительно невысокой термостойкостью.

Международная система тестирования по английскому языку IELTS. Пройдите курсы по подготовке к ИЕЛТС в Астане или удаленно у носителей языка и грамотных специалистов!

34. Композицио́ нный материа́ л (КМ), компози́ т — искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с чёткой границей раздела между ними. В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу (или связующее) и включённые в неё армирующие элементы (или наполнители). В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жёсткость и т. д.), а матрица обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды.

Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связей между ними. Характеристики создаваемого изделия, как и его свойства, зависят от выбора исходных ком­понентов и технологии их совмещения.

В результате совмещения армирующих элементов и матрицы образуется композиция обладающая набором свойств, отражающими не только исходные характеристики его компонентов, но и включающий новые свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородных металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Для создания композиции используются самые разные армирующие наполнители и матрицы. Это — гетинакс и текстолит (слоистые пластики из бумаги или ткани, склеенной термореактивным клеем), стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера… Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой.Булат — один из древнейших композиционных материалов. В нём тончайшие слои (иногда нити) высокоуглеродистой стали «склеены» мягким низкоуглеродным железом.

В последнее время материаловеды экспериментируют с целью создать более удобные в производстве, а значит — и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и пр.

Классификация композитов

Композиты обычно классифицируются по виду армирующего наполнителя: [1]

· волокнистые (армирующий компонент — волокнистые структуры);

· слоистые;

· наполненные пластики (армирующий компонент — частицы)

· насыпные (гомогенные),

· скелетные (начальные структуры, наполненные связующим).

Также композиты иногда классифицируют по материалу матрицы:

· композиты с полимерной матрицей,

· композиты с керамической матрицей,

· композиты с металлической матрицей,

· композиты оксид-оксид.

Преимущества композиционных материалов

Главное преимущество КМ в том, что материал и конструкция создается одновременно. Исключением являются препреги, которые являются полуфабрикатом для изготовления конструкций.

Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но, проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

· высокая удельная прочность (прочность 3500 МПа)

· высокая жёсткость (модуль упругости 130…140 — 240 ГПа)

· низкая износостойкость

· высокая усталостная прочность

· из КМ возможно изготовить размеростабильные конструкции

· легкость

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Композиционные материалы имеют достаточно большое количество недостатков, которые сдерживают их распространение.

Высокая стоимость

Высокая стоимость КМ обусловлена высокой наукоёмкостью производства, необходимостью применения специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

Анизотропия свойств

Анизотропия — зависимость свойств КМ от выбора направления измерения. Например, модуль упругости однонаправленного углепластика вдоль волокон в 10-15 раз выше, чем в поперечном.

Для компенсации анизотропии увеличивают коэффициент запаса прочности, что может нивелировать преимущество КМ в удельной прочности. Таким примером может служить опыт применения КМ при изготовлении вертикального оперения истребителя МиГ-29. Из-за анизотропии применявшегося КМ вертикальное оперение было спроектировано с коэффициентом запаса прочности кратно превосходящим стандартный в авиации коэффициент 1, 5, что в итоге привело к тому, что композитное вертикальное оперение Миг-29 оказалось равным по весу конструкции классического вертикального оперения, сделанного из дюралюминия.

Низкая ударная вязкость

Низкая ударная вязкость также является причиной необходимости повышения запаса прочности. Кроме этого, низкая ударная вязкость обуславливает высокую повреждаемость изделий из КМ, высокую вероятность возникновения скрытых дефектов, которые могут быть выявлены только инструментальными методами контроля.

Высокий удельный объём

Высокий удельный объем является существенным недостатком при применении КМ в областях с жесткими ограничениями по занимаемому объёму. Это относится, например, к области сверхзвуковой авиации, где даже незначительное увеличение объёма самолёта приводит к существенному росту волнового аэродинамического сопротивления.

Гигроскопичность

Композиционные материалы гигроскопичны, то есть склонны впитывать влагу, что обусловлено несплошностью внутренней структуры КМ. При длительной эксплуатации и многократном переходе температуры через 0 по Цельсию вода, проникающая в структуру КМ, разрушает изделие из КМ изнутри (эффект по природе аналогичен разрушению автомобильных дорог в межсезонье). Так одной из возможных причин авиакатастрофы American Airlines Flight 587, в которой от фюзеляжа оторвался композитный киль, названо разрушение структуры композитного киля от периодически замерзавшей в ней воды. Аналогичные примеры отделения композитного киля от фюзеляжа происходили также в России.[2]

КМ могут впитывать также другие жидкости, обладающие высокой проникающей способностью, например, авиационный керосин.

Токсичность

При эксплуатации КМ могут выделять пары, которые часто являются токсичными. Если из КМ изготавливают изделия, которые будут располагаться в непосредственной близости от человека (таким примером может послужить композитный фюзеляж самолета Boeing 787 Dreamliner), то для одобрения применяемых при изготовлении КМ материалов требуются дополнительные исследования воздействия компонентов КМ на человека.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 2010; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь