Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ВОПРОС 13. Классификация сталей по структуре и назначению.



ВОПРОС 13. Классификация сталей по структуре и назначению.

По структуре:

1) доэвтектоидные (углерод 0-0,8) в этой структуре наход. Феррит и перлит. Чем < С, тем >перлита, сталь прочнее.

2) эвтектоидные (С=0,8). У них в структуре один перлит, стали прочные.

3) заявтектоидные (С 0,8-2,14). У них в структуре нах П и Ц втор, стали очень твёрдые, менее вязки и пластичны.

По назначению:

1) строительные (С 0,8-2,14) эти стали достаточно прочные, хорошо прокатываются, свариваются.

2) Машиностроительные (С 0,3-0,8). У них больше перлита, поэтому они более ТВ, чем строительные, хотя сокр вязкость и пластичность.

3) Инструментальные (С от 0,7-1,3). Это высокоуглер стали, очень ТВ., не пластичные.

4) Литейные стали – сплавы идут на стальные отливки. С=0,035. малоуглеродистые стали.

 

ВОПРОС 14. Классификация сталей по способу про-ва и качеству.

По способу пр-ва:

1) Кислый способ;

2) Основной способ – нераскислённая сталь кп, спокойная СП, если после марки нет букв, то это спокойная сталь, если не полностью раскислённая, то пс.

По качеству:

В зависимости от содержания вредных примесей: серы и фосфора-стали подразделяют на:

Стали обыкновенного качества, содержание до 0.06% серы и до 0,07% фосфора. Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:

1. сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора);

2. сталь группы Б - по химическому составу;

3. сталь группы В - с гарантированными механическими свойствами и химическим составом.

 

1. Качественные - до 0,035% серы и фосфора каждого отдельно.

2.Высококачественные - до 0.025% серы и фосфора.

3. Особовысококачественные, до 0,025% фосфора и до 0,015% серы.

 

Легированные стали. Легирующие элементы. Маркировка л/с.

Легированные стали широко применяют в тракторном и сельскохозяйственном машиностроении, в автомобильной промышленности, тяжелом и транспортном машиностроении в меньшей степени в станкостроении, инструментальной и других видах промышленности. Это стали применяют для тяжело нагруженных металлоконструкций.

Стали, в которых суммарное количество содержание легирующих элементов не превышает 2.5%, относятся к низколегированным, содержащие 2.5-10% - к легированным, и более 10% к высоколегированным (содержание железа более 45%).

Наиболее широкое применение в строительстве получили низколегированные стали, а в машиностроении - легированные стали.

Легированные конструкционные стали маркируют цифрами и буквами. Двухзначные цифры, приводимые в начале марки, указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры обозначают легирующий элемент. Пример, сталь 12Х2Н4А содержит 0.12% С, 2% Cr, 4% Ni и относится к высококачественным, на что указывает в конце марки буква ІАІ.

Строительные низколегированные стали

Низко легированными называют стали, содержащие не более 0.22% С и сравнительно небольшое количество недефицитных легирующих элементов: до 1.8% Mn, до 1,2% Si, до 0,8% Cr и другие.

К этим сталям относятся стали 09Г2, 09ГС, 17ГС, 10Г2С1, 14Г2, 15ХСНД, 10ХНДП и многие другие. Стали в виде листов, сортового фасонного проката применяют в строительстве и машиностроении для сварных конструкций, в основном без дополнительной термической обработки. Низколегированные низкоуглеродистые стали хорошо свариваются.

Для изготовления труб большого диаметра применяют сталь 17ГС (s0.2=360МПа, sв=520МПа).

Для изготовления деталей, упрочняемых цементацией, применяют низкоуглеродистые (0.15-0.25% С) стали. Содержание легирующих элементов в сталях не должно быть слишком высоким, но должно обеспечить требуемую прокаливаемость поверхностного слоя и сердцевины.

Хромистые стали 15Х, 20Х предназначены для изготовления небольших изделий простой формы, цементируемых на глубину 1.0-1.5мм. Хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при некоторой меньшей пластичности в сердцевине и лучшей прочности в цементируемом слое.

 

Производство стали.

В стали по сравнению с чугуном содержится меньше углерода, кремния, серы и фосфора. Для получения стали из чугуна необходимо снизить концентрацию веществ путем окислительной плавки.

В современной металлургической промышленности сталь выплавляют в основном в трех агрегатах: конвекторах, мартеновских и электрических печах.

Производство стали в конверторах.

 

Конвертор представляет собой сосуд грушевидной формы. Верхнюю часть называют козырьком или шлемом. Она имеет горловину, через которую жидкий чугун и сливают сталь и шлак. Средняя часть имеет цилиндрическую форму. В нижней части есть приставное днище, которое по мере износа заменяют новым. К днищу присоединена воздушная коробка, в которую поступает сжатый воздух.

Емкость современных конвекторов равна 60 – 100 т. и более, а давление воздушного дутья 0,3-1,35 Мн/м. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Перед заливкой чугуна конвектор поворачивают до горизонтального положения, при котором отверстия фурм оказываются выше уровня залитого чугуна. Затем его медленно возвращают в вертикальное положение и одновременно подают дутье, не позволяющее металлу проникать через отверстия фурм в воздушную коробку. В процессе продувки воздухом жидкого чугуна выгорают кремний, марганец, углерод и частично железо.

При достижении необходимой концентрации углерода конвектор возвращают в горизонтальное положение и прекращают подачу воздуха. Готовый металл раскисляют и выливают в ковш.

Бессемеровский процесс.В конвертор заливают жидкий чугун с достаточно высоким содержанием кремния (до 2,25% и выше), марганца (0,6-0,9%), и минимальным количеством серы и фосфора.

По характеру происходящей реакции бессемеровский процесс можно разбить на три периода. Первый период начинается после пуска дутья в конвертор и продолжается 3-6 мин. Из горловины конвертора вместе с газами вылетают мелкие капли жидкого чугуна с образованием искр. В этот период окисляются кремний, марганец и частично железа по реакциям:

Si + O2 = SiO2,

2Mn + O2 = 2MnO,

2Fe + O2 = 2FeO.

 

Образующаяся закись железа частично растворяется в жидком металле, способствуя дальнейшему окислению кремния и марганца. Эти реакции протекают с выделением большого количества тепла, что вызывает разогрев металла. Шлак получается кислым (40-50% SiO2).

Второй период начинается после почти полного выгорания кремния и марганца. Жидкий металл достаточно хорошо разогрет, что создаются благоприятные условия для окисления углерода по реакции C + FeO = Fe + CO, которая протекает с поглощением тепла. Горение углерода продолжается 8-10 мин и сопровождается некоторым понижением температуры жидкого металла. Образующаяся окись углерода сгорает на воздухе. Над горловиной конвектора появляется яркое пламя.

По мере снижения содержания углерода в металле пламя над горловиной уменьшается и начинается третий период. Он отличается от предыдущих периодов появлением над горловиной конвертора бурого дыма. Это показывает, что из чугуна почти полностью выгорели кремний, марганец и углерод и началось очень сильное окисление железа. Третий период продолжается не более 2 – 3 мин, после чего конвектор переворачивают в горизонтальное положение и в ванну вводят раскислители (ферромарганец, ферросилиций или алюминий) для понижения содержания кислорода в металле. В металле происходят реакции

FeO + Mn = MnO + Fe,

2FeO + Si = SiO2 + Fe,

3FeO + 2Al = Al2O3 + 3Fe.

Готовую сталь выливают из конвектора в ковш, а затем направляют на разливку.

Чтобы получить сталь с заранее заданным количеством углерода (например, 0,4 – 0,7% С), продувку металла прекращают в тот момент, когда из него углерод еще не выгорел, или можно допустить полное выгорание углерода, а затем добавить определенное количество чугуна или содержащих углерод определенное количество ферросплавов.

Большинство мартеновских печей отапливают смесью доменного, коксовального и генераторного газов. Также применяют и природный газ. Мартеновская печь, работающая на мазуте, имеет генераторы только для нагрева воздуха.

Шихтовые материалы (скрапы, чугун, флюсы) загружают в печь наполненной машиной через завалочные окна. Разогрев шихты, рас плавление металла и шлака в печи происходит в плавильном пространстве при контакте материалов с факелом раскаленных газов. Готовый металл выпускают из печи через отверстия, расположенные в самой низкой части подины. На время плавки выпускное отверстие забивают огнеупорной глиной.

Процесс плавки в мартеновских печах может быть кислым или основным. При кислом процессе огнеупорная кладка печи выполнена из динасов ого кирпича. Верхние части подины наваривают кварцевым песком и ремонтируют после каждой плавки. В процессе плавке получают кислый шлак с большим содержанием кремнезема (42-58%).

При основном процессе плавки подину и стенки печи выкладывают из магнезитового кирпича, а свод – из динасов ого или хромомагнезитового кирпича. Верхние слои подины наваривают магнезитовым или доломитовым порошком и ремонтируют после каждой плавки. В процессе плавки получают кислый шлак с большим содержанием 54 – 56% СаО.

Основной мартеновский процесс. Перед началом плавки определяют количество исходных материалов (чушковый чугун, стальной скрап, известняк, железная руда) и последовательность их загрузки в печь. При помощи заливочной машины мульда (специальная коробка) с шахтой вводится в плавильное пространство печи и переворачивается, в результате чего шихта высыпается на подину печи. Сначала загружают мелкий скрап, затем более крупный и на него кусковую известь (3 – 5 % массы металла). После прогрева загруженных материалов подают оставшийся стальной лом и предельный чугун двумя тремя порциями.

Для более интенсивного питания металлической ванны кислородом в шлак вводят железную руду. Кислород, растворенный в металле, окисляет кремний, марганец, фосфор и углерод по реакциям, рассмотренным выше.

К моменту рас плавления всей шихты значительная часть фосфора переходит в шлак, так как последний содержит достаточное количество закиси железа и извести. Во избежание обратного перехода фосфора в металл перед началом кипения ванны 40 – 50% первичного шлака из печи.

После скачивания первичного шлака в печь загружают известь для образования нового и более основного шлака. Тепловая нагрузка печи увеличивается, для того чтобы тугоплавкая известь быстрее перешла в шлак, а температура металлической ванны повысилась. Через некоторое время 15 – 20 мин в печь загружают железную руду, которая увеличивает содержание окислов железа в шлаке, и вызывает в металле реакцию окисления углерода

[C] + (FeO) = Coгаз.

Образуется окись углерода выделяется из металла в виде пузырьков, создавая впечатление его кипения, что способствует перемешиванию металла, выделение металлических включений и растворенных газов, а также равномерному распределению температуры по глубине ванны. Для хорошего кипения ванны необходимо подводить тепло, так как данная реакция сопровождается поглощением тепла. Продолжительность периода кипения ванны зависит от емкости печи и марки стали, и находится 1,25 – 2,5 ч и более.

Обычно железную руду добавляют в печь в первую периода кипения, называемого полировкой металла. Скорость окисления углерода в этот период в современных мартеновских печах большой емкости равна 0,3 – 0,4% в час.

В течение второй половины периода кипения железную руду в ванну не подают. Металл кипит мелкими пузырьками за счет накопленных в шлаке окислов железа. Скорость выгорания углерода в этот период равна 0,15 – 0,25% в час. В период кипения, следя за основностью и жидкотекучестью шлака.

Когда содержание углерода в металле окажется несколько ниже, чем требуется для готовой стали, начинается последняя стадия плавки – период доводки и раскисления металла. В печь вводят определенное количество кускового ферромарганца (12% Mn), а затем через 10 – 15 мин ферросилиций (12-16% Si). Марганец и кремний взаимодействуют с растворенным в металле кислородом, в результате чего реакция окисления углерода приостанавливается. Внешним признаком освобождения металла от кислорода является прекращение выделения пузырьков окиси углерода на поверхности шлака.

При основном процессе плавки происходит частичное удаление серы из металла по реакции

[FeS] + (CaO) = (CaO) + (FeO).

Для этого необходимы высокая температура и достаточная основность шлака.

Кислый мартеновский процесс. Этот процесс состоит из тех же периодов, что и основной. Шихту применяют очень чистую по фосфору и сере. Объясняется это тем, что образующийся кислый шлак не может задерживать указанные вредные примеси.

Печи обычно работают на твердой шихте. Количество скрапа равно 30 – 50% массы металлической шихты. В шихте допускается не более 0,5% Si. Железную руду в печь подавать нельзя, так как она может взаимодействовать с кремнеземом подины и разрушать ее в результате образования легкоплавкого соединения 2FeO*SiO2. Для получения первичного шлака в печь загружают некоторое количество кварцита или мартеновского шлака. После этого шихта нагревается печными газами; железо, кремний, марганец окисляются, их окислы сплавляются с флюсами и образуют кислый шлак, содержащий до 40 –50 % SiO2. В этом шлаке большая часть закиси железа находится в силикатной форме, что затрудняет его переход из шлака в металл. Кипение ванной при кислом процессе начинается позже, чем при основном, и происходит медленнее даже при хорошем нагреве металла. Кроме того, кислые шлаки имеют повышенную вязкость, что отрицательно сказывается на выгорании углерода.

Так как сталь выплавляется под слоем кислого шлака с низким содержанием свободной закиси железа, этот шлак защищает металл от насыщения кислородом. Перед выпуском из печи в стали содержится меньше растворенного кислорода, чем в стали, выплавленной при основном процессе.

Для интенсификации мартеновского процесса воздух обогащают кислородом, который подается в факел пламени. Это позволяет получать более высокие температуры в факеле пламени, увеличивать ее лучеиспускательную способность, уменьшать количество продуктов горения и благодаря этому увеличивать тепловую мощность печи.

Кислород можно вводить и в ванну печи. Введение кислорода в факел и в ванну печи сокращает периоды плавки и увеличивает производительность печи на 25-30%. Изготовление хромомагнезитовых сводов вместо динасовых позволяет увеличивать тепловую мощность печей, увеличить межремонтный период в 2-3 раза и повысить производительность на 6-10%.

 

 

Электроннолучевая плавка металлов. Для получения особо чистых металлов и сплавов используют электроннолучевую плавку. Плавка основана на использовании кинетической энергии свободных электронов, получивших ускорение в электрическом поле высокого напряжения. На металл направляется поток электронов, в результате чего он нагревается и плавится.

Электроннолучевая плавка имеет ряд преимуществ: электронные лучи позволяют получить высокую плотность энергии нагрева, регулировать скорость плавки в больших пределах, исключить загрязнение расплава материалом тигля и применять шихту в любом виде. Перегрев расплавленного металла в сочетании с малыми скоростями плавки и глубоким вакуумом создают эффективные условия для очистки металла от различных примесей.

Электрошлаковый переплав. Очень перспективным способом получения высококачественного металла является электрошлаковый переплав. Капли металла, образующиеся при переплаве заготовки, проходят через слой жидкого металла и рафинируются. При обработке металла шлаком и направленной кристаллизации слитка снизу вверх содержание серы в заготовке снижается на 30 – 50%, а содержание неметаллических включений – в два-три раза.

Вакуумирование стали. Для получения высококачественной стали, широко применяется вакуумная плавка. В слитке содержатся газы и некоторое количество неметаллических включений. Их можно значительно уменьшить, если воспользоваться вакуумированием стали при ее выплавке и разливке. При этом способе жидкий металл подвергается выдержке в закрытой камере, из которой удаляют воздух и другие газы. Вакуумирование стали производится в ковше перед заливкой по изложницам. Лучшие результаты получаются тогда, когда сталь после вакуумирования в ковше разливают по изложницам так же в вакууме. Выплавка металла в вакууме осуществляется в закрытых индукционных печах.

Рафирование стали в ковше жидкими синтетическими шлаками. Сущность этого метода состоит в том, что очистка стали от серы, кислорода и неметаллических включений производится при интенсивном перемешивании стали в ковше с предварительно слитым в него шлаком, приготовленном в специальной шлакоплавильной печи. Сталь после обработки жидкими шлаками обладает высокими механическими свойствами. За счет сокращения периода рафинирования в дуговых печах, производительность которых может быть увеличена на 10 – 15%. Мартеновская печь, обработанная синтетическими шлаками, по качеству близка к качеству стали, выплавляемой в электрических печах.

Сталь (от нем. Stahl) — сплав (твёрдый раствор) железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).

Применения

Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.

Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью.

Классификация

Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3—0,55 % С) и высокоуглеродистые (0,6—2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4 % легирующих элементов, среднелегированные — до 11 % легирующих элементов и высоколегированные — свыше 11 % легирующих элементов.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

Характеристики стали

Плотность: 7700—7900 кг/м³,

Удельный вес: 75500—77500 Н/м³ (7700—7900 кгс/м³ в системе МКГСС),

Удельная теплоемкость при 20 °C: 462 Дж/(кг·°C) (110 кал/(кг·°C)),

Температура плавления: 1450—1520 °C,

Удельная теплота плавления: 84 кДж/кг (20 ккал/кг, 23 Вт·ч/кг),

Коэффициент теплопроводности при температуре 100 °C. Хромоникельвольфрамовая сталь 15,5 Вт/(м·К)

Хромистая сталь 22,4 Вт/(м·К)

Молибденовая сталь 41,9 Вт/(м·К)

Углеродистая сталь (марка 30) 50,2 Вт/(м·К)

Углеродистая сталь (марка 15) 54,4 Вт/(м·К)

Коэффициент линейного теплового расширения при температуре около 20 °C: сталь Ст3 (марка 20) 1/°C

сталь нержавеющая 1/°C

Сталь рельсовая 690—785 МПа

Производство стали

Суть процесса переработки чугуна на сталь состоит в уменьшении до нужной концентрации содержания углерода и вредных примесей — фосфора и серы, которые делают сталь хрупкой и ломкой. В зависимости от способа окисления углерода существуют различные способы переработки чугуна на сталь: конверторный, мартеновский и электротермический.

Бессемеровский способ

Бессемеровский способом перерабатывают чугуны, содержащие мало фосфора и серы и богатые кремнием (не менее 2 %). При продувке кислорода сначала окисляется кремний с выделением значительного количества тепла. Вследствие этого начальная температура чугуна примерно с 1300° C быстро поднимается до 1500—1600° С. Выгорания 1 % Si обусловливает повышение температуры на 200° C. Около 1500° C начинается интенсивное выгорание углерода. Вместе с ним интенсивно окисляется и железо, особенно к концу выгорания кремния и углерода:

Si + O2 = SiO2

2C + O2 = 2CO ↑

2Fe + O2 = 2FeO

Образующийся монооксид железа FeO, хорошо растворяется в расплавленном чугуне и частично переходит в сталь, а частично реагирует с SiO2 и в виде силиката железа FeSiO3 переходит в шлак:

FeO + SiO2 = FeSiO3

Фосфор полностью переходит из чугуна в сталь, так P2O5 при избытке SiO2 не может реагировать с основными оксидами, поскольку SiO2 с последними реагирует более энергично. Поэтому фосфористые чугуны перерабатывать в сталь этим способом нельзя.

Все процессы в конверторе идут быстро — в течение 10—20 минут, так как кислород воздуха, продуваемый через чугун, реагирует с соответствующими веществами сразу по всему объёму металла. При продувке воздухом, обогащенным кислородом, процессы ускоряются. Монооксид углерода CO, образующийся при выгорании углерода, пробулькивает вверх, сгорает там, образуя над горловиной конвертора факел светлого пламени, который по мере выгорания углерода уменьшается, а затем совсем исчезает, что и служит признаком окончания процесса. Получаемая при этом сталь содержит значительные количества растворенного монооксида железа FeO, который сильно снижает качество стали. Поэтому перед разливкой сталь надо обязательно разкислить с помощью различных разкислителей — ферросилиция, фероманганца или алюминия:

2FeO + Si = 2Fe + SiO2

FeO + Mn = Fe + MnO

3FeO + 2Al = 3Fe + Al2O3

Монооксид марганца MnO как основной оксид реагирует с SiO2 и образует силикат марганца MnSiO3, который переходит в шлак. Оксид алюминия как нерастворимое при этих условиях вещество тоже всплывает наверх и переходит в шлак. Несмотря на простоту и высокую продуктивность, бессемеровский способ теперь не достаточно распространен, поскольку он имеет ряд существенных недостатков. Так, чугун для бессемеровского способа должен быть с наименьшим содержанием фосфора и серы, что далеко не всегда возможно. При этом способе происходит очень большое выгорания металла, и выход стали составляет лишь 90 % от массы чугуна, а также расходуется много разкислителей. Серьезным недостатком является невозможность регулирования химического состава стали.

Бессемеровская сталь содержит обычно менее 0,2 % углерода и используется как техническое железо для производства проволоки, болтов, кровельного железа и т. п..

Томасовский способ

Томасовские способом перерабатывают чугун с большим содержанием фосфора (до 2 % и более). Основное отличие этого способа от бессемеровского заключается в том, что футеровку конвертера делают из оксидов магния и кальция. Кроме того, к чугуну добавляют ещё до 15 % CaO. Вследствие этого шлакообразующие вещества содержат значительный избыток оксидов с основными свойствами.

В этих условиях фосфатный ангидрид P2O5, который возникает при сгорании фосфора, взаимодействует с избытком CaO с образованием фосфата кальция, переходит в шлак:

4P + 5O2 = 2P2O5

P2O5 + 3CaO = Ca3(PO4)2

Реакция горения фосфора является одним из главных источников тепла при этом способе. При сгорании 1 % фосфора температура конвертора поднимается на 150 ° C. Сера выделяется в шлак в виде нерастворимого в расплавленной стали сульфида кальция CaS, который образуется в результате взаимодействия растворимого FeS с CaO по реакции:

FeS + CaO = FeO + CaS

Все последние процессы происходят так же, как и при бессемеровский способе. Недостатки Томасовского способа такие же, как и бессемеровского. Томасовские сталь также малоуглеродная и используется как техническое железо для производства проволоки, кровельного железа и т. п.

Мартеновская печь

Мартеновский способ отличается от конверторного тем, что выжигание избытка углерода в чугуне происходит не только за счет кислорода воздуха, но и кислорода оксидов железа, которые добавляются в виде железной руды и ржавого железного лома.

Мартеновская печь состоит из плавильной ванны, перекрытой сводом из огнеупорного кирпича, и особых камер регенераторов для предварительного подогрева воздуха и горючего газа. Регенераторы заполнены насадкой из огнеупорного кирпича. Когда первые два регенераторы нагреваются печными газами, горючий газ и воздух вдуваются в печь через раскаленные третий и четвёртый регенераторы. Через некоторое время, когда первые два регенератора нагреваются, поток газов направляют в противоположном направлении и т. д.

Плавильные ванны мощных мартеновских печей имеют длину до 16 м, ширину до 6 м и высоту более 1 м. Вместимость таких ванн достигает 500 т стали. В плавильную ванну загружают железный лом и железную руду. К шихте добавляют также известняк как флюс. Температура печи поддерживается при 1600—1650° C и выше. Выгорания углерода и примесей чугуна в первый период плавки происходит главным образом за счет избытка кислорода в горючей смеси с теми же реакциями, что и в конверторе, а когда над расплавленным чугуном образуется слой шлака — за счет оксидов железа

4Fe2O3 + 6Si = 8Fe + 6SiO2

2Fe2O3 + 6Mn = 4Fe + 6MnO

Fe2O3 + 3C = 2Fe + 3CO ↑

5Fe2O3 + 2P = 10FeO + P2O5

FeO + С = Fe + CO ↑

Вследствие взаимодействия основных и кислотных оксидов образуются силикаты и фосфаты, которые переходят в шлак. Сера тоже переходит в шлак в виде сульфида кальция:

MnO + SiO2 = MnSiO3

3CaO + P2O5 = Ca3(PO4)2

FeS + CaO = FeO + CaS

Мартеновские печи, как и конверторы, работают периодически. После разливки стали печь снова загружают шихтой и т. д. Процесс переработки чугуна в сталь в мартенах происходит относительно медленно в течение 6-7 часов. В отличие от конвертора в мартенах можно легко регулировать химический состав стали, добавляя к чугуну железный лом и руду в той или иной пропорции. Перед окончанием плавки нагрева печи прекращают, сливают шлак, а затем добавляют розкисникы. В мартенах можно получать и легированную сталь. Для этого в конце плавки добавляют к стали соответствующие металлы или сплавы.

Электротермический способ

Электротермический способ имеет перед мартеновским и особенно конверторным целый ряд преимуществ. Этот способ позволяет получать сталь очень высокого качества и точно регулировать её химический состав. Доступ воздуха в электропечь незначительный, поэтому значительно меньше образуется монооксида железа FeO, загрязняющего сталь и снижающего её свойства. Температура в электропечи — не ниже 2000° C. Это позволяет проводить плавку стали на сильно основных шлаках (которые трудно плавятся), при которых полнее удаляется фосфор и сера. Кроме того, благодаря очень высокой температуре в электропечах можно легировать сталь тугоплавкими металлами — молибденом и вольфрамом. Но в электропечах расходуется очень много электроэнергии — до 800 кВт / ч на 1 т стали. Поэтому этот способ применяют только для получения высококачественной спецстали.

Электропечи бывают разной емкости — от 0,5 до 180 т. Футеровку печи делают обычно основной (с CaO и MgO). Состав шихты может быть разный. Иногда она состоит на 90 % из железного лома и на 10 % из чугуна, иногда в ней преобладает чугун с добавками в определенной пропорции железной руды и железного лома. К шихте добавляют также известняк или известь как флюс. Химические процессы при выплавке стали в электропечах те же, что и в мартенах.

Свойства стали

Физические свойства

плотность ρ ≈ 7,86 г / см3; коэффициент линейного теплового расширения α = 11 … 13 · 10−6 K−1;

коэффициент теплопроводности k = 58 Вт / (м · K);

модуль Юнга E = 210 ГПа;

модуль сдвига G = 80 ГПа;

коэффициент Пуассона ν = 0,28 … 0,30;

удельное сопротивление (20 ° C , 0,37-0,42 % углерода) = 1,71 · 10−7 Ом · м

Перлит — эвтектоидная смесь двух фаз — феррита и цементита, содержит 1/8 цементита и поэтому имеет повышенную прочность и твердость по сравнению с ферритом. Поэтому доэвтектоидные стали гораздо более пластичны, чем заэвтектоидные.

Стали содержат до 2,14 % углерода. Фундаментом науки о стали, как сплава железа с углеродом является диаграмма состояния сплавов железо-углерод — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры. Для улучшения механических и других характеристик сталей применяют легирование. Главная цель легирования подавляющего большинства сталей — повышение прочности за счет растворения легирующих элементов в феррите и аустените, образования карбидов и увеличения прокаливаемости. Кроме того, легирующие элементы могут повышать устойчивость против коррозии, термостойкость, жаропрочность и др. Такие элементы как хром, марганец, молибден, вольфрам, ванадий, титан образуют карбиды, а никель, кремний, медь, алюминий карбидов не образуют. Кроме того, легирующие элементы уменьшают критическую скорость охлаждения при закалке, что необходимо учитывать при назначении режимов закалки (температуры нагрева и среды для охлаждения). При значительном количестве легирующих элементов может существенно измениться структура, что приводит к образованию новых структурных классов по сравнению с углеродистыми сталями.

Обработка стали

Виды термообработки

Сталь в исходном состоянии достаточно пластична, её можно обрабатывать путем деформирования: ковать, вальцеваты, штамповать. Характерной особенностью стали является её способность существенно изменять свои механические свойства после термической обработки сущность которой заключается в изменении структуры стали при нагреве, выдержке и охлаждении, согласно специальному режиму. Различают следующие виды термической обработки:

отжиг;

нормализация;

закалки;

Отпуск.

Чем богаче сталь на углерод, тем она тверже после термической обработки. Сталь с содержанием углерода до 0,3 % (техническое железо) практически закаливанию не поддается.

Цементация (C) увеличивает твердость поверхности мягкой стали из-за увеличения концентрации углерода в поверхностных слоях.

ВОПРОС 13. Классификация сталей по структуре и назначению.

По структуре:

1) доэвтектоидные (углерод 0-0,8) в этой структуре наход. Феррит и перлит. Чем < С, тем >перлита, сталь прочнее.

2) эвтектоидные (С=0,8). У них в структуре один перлит, стали прочные.

3) заявтектоидные (С 0,8-2,14). У них в структуре нах П и Ц втор, стали очень твёрдые, менее вязки и пластичны.

По назначению:

1) строительные (С 0,8-2,14) эти стали достаточно прочные, хорошо прокатываются, свариваются.

2) Машиностроительные (С 0,3-0,8). У них больше перлита, поэтому они более ТВ, чем строительные, хотя сокр вязкость и пластичность.

3) Инструментальные (С от 0,7-1,3). Это высокоуглер стали, очень ТВ., не пластичные.

4) Литейные стали – сплавы идут на стальные отливки. С=0,035. малоуглеродистые стали.

 






Читайте также:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 97; Нарушение авторского права страницы


lektsia.com 2007 - 2017 год. Все права принадлежат их авторам! (0.18 с.) Главная | Обратная связь