Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Истинная диаграмма растяжения



Рис. 2

Fк - конечная площадь поперечного сечения образца.

Истинные напряжения Si определяют как отношение нагрузки к площади поперечного сечения в данный момент времени.

При испытании на растяжение определяются и характеристики пластичности.

Пластичность способность материала к пластической деформации, то есть способность получать остаточное изменение формы и размеров без нарушения сплошности. Это свойство используют при обработке металлов давлением.

Характеристики:

· относительное удлинение:

lо и lк – начальная и конечная длина образца;

Δ lост – абсолютное удлинение образца, определяется измерением образца после разрыва.

· относительное сужение:

Fо – начальная площадь поперечного сечения;

Fк – площадь поперечного сечения в шейке после разрыва.

 

Твердостью металла называется сопротивление, оказываемое металлом при вдавливании в него твердых предметов.

где А0, – первоначальная площадь поперечного сечения и длина расчетного участка образца до начала испытаний. Так как величины А0 и постоянны, то диаграмма имеет тот же вид, что и диаграмма и отличается от нее только масштабом.

Диаграмма характеризует свойства испытуемого материала и называется условной диаграммой растяжения, так как напряжения и относительные удлинения вычислены по отношению к первоначальной площади сечения А0 и первоначальной длине .

Диаграмма растяжения образца из малоуглеродистой стали Ст3 (рис. 2.10) характеризуется четырьмя участками.

 

 

Рис. 2.10. Условная диаграмма растяжения

 

Предельные напряжения

Участок I соответствует упругим деформациям материала, подчиняющимся закону Гука: величина относительной деформации прямо пропорциональна напряжению. Отношение растягивающего усилия в точке А к первоначальной площади поперечного сечения называется пределом пропорциональности: .

Участок II начинается после точки А, когда диаграмма становится криволинейной. Однако до точки В деформации остаются упругими (восстанавливаются после снятия нагрузки). Отношение растягивающего усилия в точке В к площади А0 называется пределом упругости: – это такое напряжение, при котором величина остаточной деформации не превышает 0, 005 %. При дальнейшем увеличении нагрузки появляются неупругие (остаточные) деформации. В точке С начинается процесс деформирования образца без увеличения внешней нагрузки. Это явление называется текучестью материала, а участок CD – площадкой текучести. Максимальное напряжение, при котором происходит рост деформации без увеличения силы, называется пределом текучести: . В зоне текучести у стальных образцов существенно меняется электропроводность и магнитные свойства. Поверхность полированного образца покрывается линиями (линии Чернова), наклоненными к его оси, и становится матовой.

Для ряда материалов (медь, алюминий), не имеющих на диаграмме выраженной площадки текучести, вводят понятие условного предела текучести , под которым подразумевают напряжение, вызывающее остаточную деформацию, равную 0, 2 %.

Участок III характеризуется увеличением нагрузки, при которой происходит дальнейшая деформация образца. Если образец нагрузить до состояния, соответствующего точке L диаграммы, а затем разгрузить, то процесс разгрузки на диаграмме будет обозначен прямой линией LL1, параллельной участку ОА. При разгрузке деформация полностью не исчезает: она уменьшается на величину L1М упругой части удлинения. Отрезок ОL1 представляет собой остаточную деформацию. Если образцу дать «отдохнуть» и подвергнуть повторному нагружению, то процесс пойдет по линии L1LKR. При этом предел пропорциональности значительно увеличится (точка L находится выше точки А), но при этом уменьшится пластичность. Это явление получило название наклепа.

Отношение наибольшей нагрузки к первоначальной площади поперечного сечения стержня называется пределом временного сопротивления: . Пределу прочности соответствует максимальное напряжение в образце до его разрушения.

Участок IV начинается в точке К и заканчивается разрушением образца в точке R. Этот участок носит название зоны разрушения. Деформация образца на этом участке характерна образованием «шейки» и образовавшимся удлинением за счет его утонения (рис. 2.9, в). Площадь сечения образца в шейке быстро уменьшается и, как следствие, падает усилие и условное напряжение. Разрыв образца происходит по наименьшему сечению шейки.

Степень пластичности материала может быть охарактеризована величинами остаточного относительного удлинения образца, доведенного при растяжении до разрыва, и остаточного относительного сужения шейки:

 

; . (2.17)

 

Диаграмма растяжения хрупких материалов (рис.2.10, б) характеризуется тем, что отклонение от закона Гука начинается при малых значениях деформирующей силы; диаграмма не имеет площадки текучести; образцы разрушаются при очень малой остаточной деформации. За характеристику прочности хрупких материалов принимают временное сопротивление при растяжении .

На диаграмме растяжения (рис. 2.10, а) прямолинейный участок ОА, соответствующий закону Гука ( ), наклонен под углом к оси абсцисс:

 

Твердостью называется свойство материала оказывать сопротивление проникновению (внедрению) в него другого, более твердого тела. Твердость является косвенной характеристикой материала в условиях контактного воздействия.

Для определения твердости металла существует несколько способов. Наиболее широкое применение получили способы определения твердости по Бринеллю (НВ) и Роквеллу (НR).

Твердость по Бринеллю определяют вдавливанием закаленного шарика в испытуемый материал. При испытании по Роквеллу в материал вдавливают алмазный наконечник. Величина НВ, характеризующая твердость (число твердости по Бринеллю), представляет отношение силы F, с которой вдавливается шарик, к поверхности лунки, оставшийся после вдавливания на испытуемом материале (рис. 2.12, а):

 

. (2.26)

 

Числом твердости можно пользоваться в производственных условиях для определения других механических характеристик. Так, например, для сталей , МПа.

При испытаниях материала на твердость по методу Роквелла в испытуемый образец вдавливается алмазный конус с углом при вершине 120о (рис. 2.12, б) или стальной закаленный шарик диаметром 1, 5875 мм. К наконечнику прикладывается предварительная нагрузка F0 =100 Н, а затем основная нагрузка F1. Общая нагрузка F при испытании алмазным конусом составляет 600 Н (шкала А) и 1500 Н (шкала С), а при испытании шариком F =1000 Н (шкала В).

вердость определяют вдавливанием в поверхность испытуемого металла стального шарика (метод Бринелля), алмазного конуса (метод Роквелла) или алмазной пирамиды (метод Виккерса). По методу Бринелля шарик из твердой стали вдавливается с заданной и точно известной силой в плоскую поверхность металлического образца. В результате на образце остается отпечаток в виде шарового сегмента. Число твердости (НВ) определяют делением нагрузки на площадь отпечатка. Перед числом твердости, полученным по методу Бринелля, ставится символ 1 В (например, НВ 240).

При измерении твердости алмазной пирамидой по Виккерсу наконечник в форме правильной четырехгранной пирамиды вдавливается в испытуемый образец (или изделие) под действием нагрузки, приложенной в интервале определенного времени. После удаления нагрузки производят

измерение диагонали отпечатка на поверхности образца. Число твердости (HV) определяют делением нагрузки на площадь боковой поверхности полученного пирамидального отпечатка. Перед числом твердости, полученным по методу Виккерса, ставится символ HV (например, HV300). Метод Виккерса позволяет измерять твердость всех материалов, начиная с самых мягких и кончая самыми твердыми. Числа твердости по Виккерсу и по Бринеллю имеют одинаковую размерность и для материалов с твердостью до НВ 450 практически совпадают.

При измерении твердости по Роквеллу наконечник в виде алмазного конуса или стального шарика вдавливается под определенной нагрузкой в испытуемый образец (или изделие). За единицу твердости по Роквеллу условно принята величина, соответствующая осевому перемещению наконечника на 0, 002 мм. Перед числом твердости, полученным по методу Роквелла, ставится символ HRC (например, HRC 35—40).

 

 

Рис. 2.12. Определение твердости

 

Число твердости по Роквеллу (HRA, HRB или HRC) определяется по разности глубин h вдавливания после снятия основной нагрузки F1. За единицу твердости по Роквеллу принята условная единица, соответствующая глубине h0 = 0, 002 мм.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 2270; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь