Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метаморфические горные породы.



Основы нефтегазового дела.

ВВЕДЕНИЕ

Нефть стала известна людям более четырёх тысяч лет тому назад.

На заре цивилизации нефть не играла большой роли в быту и технике. До нас дошли скупые сведения о том, что она применялась греками, египтянами и ассирийцами преимущественно для медицинских целей, в строительном деле (асфальт), при изготовлении туши, в военном деле (" греческий огонь" ), а также для освещения комнат и смазки колёс.

Признание как дешёвого топлива и источника ценных продуктов нефть получила только за последние сто лет. В данный момент развитие техники и промышленности невозможно себе представить без использования нефти и продуктов её переработки.

Из нефти вырабатываются горючее для двигателей внутреннего сгорания, топлива для газовых турбин и котельных установок, смазочные масла, битумы для дорожных покрытий, сажа для резиновой промышленности, кокс для электродов и множество других промышленных и потребительских товаров.

Газы – попутные, природные, газы нефтепереработки, ароматические углеводороды, жидкие и твёрдые парафины – незаменимое сырьё для нефтехимической промышленности.

На базе этого дешёвого газового и нефтяного сырья производятся полимерные материалы, синтетические волокна, каучук, моющие средства, спирты, альдегиды и многие другие ценные материалы.

Развитие научно-технической базы человечества, освоение и ввод в эксплуатацию крупнейших по запасам нефти и газа месторождений осуществляется на основе достижений прогресса в области физики нефтяного пласта. Полученные новые данные относительно нефтяных и газовых пластов, коллекторских и фильтрационных свойств горных пород (пористость, проницаемость, насыщенность, электропроводность), физических свойств пластовых жидкостей и газов, фазовых состояний предельных углеводородных систем успешно применяются на практике.

Прогресс в области физики пласта, посредством более совершенного проектирования системы разработки, способствует поведению грамотной эксплуатации нефтяных и газовых месторождений, разработке и внедрению методов повышения компонентоотдачи пластов.

Современный инженер-нефтяник, занимающийся рациональной разработкой нефтяных и газовых месторождений, должен хорошо знать геологическое строение залежи, её физическую характеристику, физические и физико-химические свойства нефти, газа и воды, насыщающих породу; должен уметь правильно обработать и оценить данные, которые получены при вскрытии пласта и при его последующей эксплуатации. Эти данные позволяют определить начальные запасы углеводородов в залежи. Они необходимы для объективного представления о процессах, происходящих в пласте на различных стадиях его разработки. На этом комплексе сведений основывается проектирование разработки месторождения, выбор тех или иных методов искусственного воздействия на залежь, если это признаётся необходимым.

Три группы горных пород

По происхождению горные породы делятся на три группы: магматические (эффузивные и интрузивные), осадочные и метаморфические. Магматические и метаморфические горные породы слагают около 90 % объёма земной коры, однако, на современной поверхности материков области их распространения сравнительно невелики. Остальные 10 % приходятся на долю осадочных пород, занимающие 75 % площади земной поверхности.

Магматические горные породы по своему происхождению делятся на эффузивные и интрузивные. Эффузивные (вулканические) горные породы образуются при изливании магмы на поверхность земли. Интрузивные горные породы, напротив, возникают при изливании магмы в толще земной коры.

Магматические горные породы

По глубине формирования породы делятся на три группы: породы кристаллизующиеся на глубине — интрузивные горные породы, например, гранит. Они образуются при медленном остывании магмы и обычно хорошо раскристаллизованны; гипабисальные горные породы образуются при застывании магмы на небольших глубинах, и часто имеют неравномернозернистые структуры (долерит). Эффузивные горные породы формируются на земной поверхности или на дне океана (базальт, риолит, андезит).

Метаморфические горные породы.

Метаморфические горные породы образуются в толще земной коры в результате изменения (метаморфизма) осадочных или магматических горных пород. Факторами, вызывающими эти изменения, могут быть: близость застывающего магматического тела и связанное с этим прогревание метаморфизуемой породы; воздействие отходящих от этого тела активных химических соединений, в первую очередь различных водных растворов (контактовый метаморфизм), или погружение породы в толщу земной коры, где на неё действуют факторы регионального метаморфизма —высокие температуры и давления.

Типичными метаморфическими Г. п. являются гнейсы, разные по составу кристаллические сланцы, контактовые роговики, скарны, амфиболиты, мигматиты и др. Различие в происхождении и, как следствие этого, в минеральном составе Г. п. резко сказывается на их химическом составе и физических свойствах.

Осадочные горные породы.

Осадочные горные породы образуются на земной поверхности и вблизи неё в условиях относительно низких температур и давлений в результате преобразования морских и континентальных осадков. По способу своего образования осадочные породы подразделяются на три основные генетические группы: обломочные породы (брекчии, конгломераты, пески, алевриты) — грубые продукты преимущественно механического разрушения материнских пород, обычно наследующие наиболее устойчивые минеральные ассоциации последних; глинистые породы —дисперсные продукты глубокого химического преобразования силикатных и алюмосиликатных минералов материнских пород, перешедшие в новые минеральные виды; хемогенные, биохемогенные и органогенные породы — продукты непосредственного осаждения из растворов (например, соли), при участии организмов (например, кремнистые породы), накопления органических вещества (например, угли) или продукты жизнедеятельности организмов (например, органогенные известняки). Промежуточное положение между осадочными и вулканическими породами занимает группа эффузивно-осадочных пород. Между основными группами осадочных пород наблюдаются взаимные переходы, возникающие в результате смешения материала разного генезиса. Характерной особенностью осадочных Г. п., связанной с условиями образования, является их слоистость и залегание в виде более или менее правильных геологических тел (пластов).

Стратиграфическая таблица

 

Эратема Система, год и место установления Индекс Число отделов Число ярусов
Кайнозойская Четвертичная, 18229, Франция Неогеновая, 1853, Италия Палеогеновая, 1872, Италия Q N P    
Мезозойская Меловая, 1822, Франция Юрская, 1793, Швейцария Триасовая, 1834, Центр. Европа K J T
Палеозойская Пермская, 1841, Россия Каменноугольная, 1822, Великобритания Девонская, 1839, Великобритания Селурская, 1873, Великобритания Ордовикская, 1879, Великобритания Кембрийская, 1835, Великобритания P C D S O C

 

 

Все горные породы имеют поры, свободные пространства между зернами, т.е. обладают пористостью. Промышленные скопления нефти (газа) содержатся главным образом в осадочных породах - песках, песчаниках, известняках, являющихся хорошими коллекторами для жидкостей и газов. Эти породы обладают проницаемостью, т.е. способностью пропускать жидкости и газы через систему многочисленных каналов, связывающих пустоты в породе.

Нефть и газ встречаются в природе в виде скоплений, залегающих на глубинах от нескольких десятков метров до нескольких километров от земной поверхности.

Пласты пористой породы, поры и трещины которой заполнены нефтью, называются нефтяными пластами (газовыми) или горизонтами.

Пласты, в которых имеются скопления нефти (газа) называются залежами нефти (газа).

Совокупность залежей нефти и газа, сконцентрированных в недрах на одной и той же территории и подчиненных в процессе образования одной тектонической структуре называется нефтяным (газовым) месторождением.

Пласты осадочных горных пород, первоначально залегавшие горизонтально, в результате воздействия давлений, температур, глубинных разрывов поднимались или опускались в целом либо относительно друг друга, а так же изгибались в складки различной формы.

Складки, обращенные выпуклостью вверх, называются антиклиналями, а складки направленные выпуклостью вниз - синклиналями.

 
 

Антиклиналь Синклиналь

Самая высокая точка антиклинали называется ее вершиной, а центральная часть сводом. Наклонные боковые части складок (антиклиналей и синклиналей) образуют крылья. Антиклиналь, крылья которой имеют углы наклона, одинаковые со всех сторон, называется куполом.

Для образования нефтяной залежи необходимы следующие условия

§ Наличие пласта- коллектора

§ Наличие над ним и под ним непроницаемых пластов (подошва и кровля пласта) для ограничения движения жидкости.

Совокупность этих условий называется нефтяной ловушкой. Различают

§ Сводовую ловушку

§ Литологически экранированные

§ Тектонически экранированные

§ Стратиграфически экранированные

 

 

Пластовое давление

Пластовое (поровое) давление представляет собой давление, оказываемое флюидами, содержащимися в горной породе.

Различие между пластовым и поровым давлениями определяется характером пород, содержащих в порах флюид. В проницаемых породах-коллекторах давление флюида называют пластовым, в «непроницаемых», таких как глина, - поровым.

Пластовое давление называется нормальным, если оно равно гидростатическому давлению столба пластовых вод, сообщающихся через

трещины и поры горной породы с атмосферой.

Пористость - совокупность всех пор независимо от их формы, размера, связи друг с другом. Понятие пористости соответствует полной пористости породы и численно выражается через коэффициент пористости:

Кп = Vпор/Vпороды? 100 %.

Рисунок – Изменение пористости горных пород в зависимости от глубины скважины

Нефтесодержащие коллекторы

 

Нефтесодержащие коллекторы или породы-коллекторы (пески, песчаники, конгломераты, трещиноватые и кавернозные известняки и доломиты и т.д.) - породы у которых поры, пустоты и трещины могут быть вместилищами нефти и газа.

· Песок - мелкообломочная рыхлая горная порода, состоящая из зерен (песчинок), подразделяется на крупнозернистый, мелкозернистый, среднезернистый и тонкозернистый. По форме зерен различают пески округленные и угловатые.

· Песчаник - обломочная осадочная горная порода из сцементированного песка. Состоит главным образом из зерен кварца.

· Глины - тонкозернистые горные породы, состоящие в основном из глинистых минералов - силикатов со слоистой кристаллической структурой. В нефтяных и газовых месторождениях глины играют роль непроницаемых перекрытий между которыми залегают пласты пород, заполненных нефтью, газом и водой.

 
 

Горные породы, содержащие нефть, газ и воду и способные отдавать их при разработке, называются коллекторами.

Коллекторские свойства нефтеносных пластов зависят от размера и формы зерен, слагающих породу, степени отсорбированности обломочного материала, характера и степеней цементации осадков, а карбонатных пород - от пористости и трещиноватости.

 

 

Породы - коллекторы характеризуются

· пористостью,

· проницаемостью

· трещиноватостью.

Пористость горной породы характеризуется наличием в ней пустот (пор), являющихся вместилищем для жидкостей (воды, нефти) и газов, находящихся в недрах Земли.

Различают пористость:

· общую,

· открытую

· эффективную

Общая пористость характеризуется разностью между объемом образца и объемом составляющих его зерен.

Открытая пористость, или пористость насыщения, характеризуется объемом тех пустот, в которые может проникать жидкость (газ) при перепадах давлений, наблюдающихся в естественных пластах.

Эффективная пористость - учитывает лишь объем открытых пор, насыщенных нефтью (или газом), за вычетом содержания связанной воды в порах.

Промышленную ценность нефтяного месторождения определяется по проницаемости его пород - способности проникновения жидкости или газов через породу. Движение жидкостей или газов через пористую среду называется фильтрацией.

Породы нефтяных и газовых залежей имеют капиллярные каналы, средний размер которых составляет 0.0002-0.5 мм.

При эксплуатации нефтяных месторождений в пористой среде движется нефть, газ, вода или их смеси Поэтому для характеристики проницаемости нефтесодержащих пород различают проницаемость

· абсолютную,

· эффективную

· относительную.

Абсолютная проницаемость - проницаемость пористой среды при движении в ней лишь одной какой-либо фазы (газа или однородной жидкости).

Эффективная (фазовая) - проницаемость породы для одной из жидкостей или газа при одновременной фильтрации различных жидкостей и газа.

Относительная - проницаемость пористой среды, характеризующаяся отношением фазовой проницаемости этой среды к абсолютной.

Одно из важных свойств горных пород - трещиноватость, которая обуславливается густотой развития в них трещин. Трещинная проницаемость прямо пропорциональна густоте трещин в пласте.

Насыщенность пор флюидами - заполнение порового пространства пород-коллекторов жидкими и/или газовыми фазами. В зависимости от флюида-заполнителя выделяются водо-, нефте- и газонасыщенность; выражаются в процентах.

Водонасыщенность - степень заполнения порового (пустотного) пространства водой. Вода в породе может быть свободная и связанная. Свободная вода перемещается в поровом пространстве при формировании скоплений УВ и может полностью или частично вытесняться, связанная - остается. Физически связанная вода зафиксирована в породе вследствие проявления молекулярных сил (сорбция), химически связанная находится в структуре минералов (например гипс). С точки зрения водонасыщенности представляют интерес свободная и физически связанная вода - та и другая занимают пустотное пространство пород.

Количество воды в породе после заполнения последней флюидом является ее остаточной водонасыщенностью. Содержание остаточной воды тем выше, чем более дисперсна порода. Например, в уплотненных мелкозернистых песчаниках остаточная водонасыщенность составляет 10-30 %, а в глинистых алевролитах - 70-75 %. При подготовке исходных данных для подсчета запасов нефти и газа из величины средней пористости пород продуктивного пласта необходимо вычесть содержание остаточной воды.

Нефте- и газонасыщенность - степень заполнения порового пространства породы соответственно нефтью или газом.

Смачиваемость - способность породы смачиваться жидкостью. В нефтяной геологии представляет интерес смачиваемость минеральных фаз водой и нефтью. Выделяются гидрофильные и гидрофобные минералы. Гидрофильные минералы способствуют повышению доли остаточной воды по отношению к нефти. По отношению к нефти также выделяются смачиваемые ею минеральные фазы, которые способствуют понижению нефтеотдачи.

Пьезопроводность - способность среды передавать давление. В случае несжимаемости среды процесс перераспределения давления происходит мгновенно. В нефтяном пласте, который характеризуется значительным проявлением упругих сил, перераспределение давления, вызванное эксплуатацией пласта, может длиться очень долго. Скорость передачи давления характеризуется коэффициентом пьезопроводности (?, см2/с):

? = Кпр / m (mbж + bп),

где Кпр - коэффициент проницаемости, дарси; m - вязкость жидкости в пластовых условиях, сП; m - коэффициент пористости породы, доли ед.; bж - коэффициент сжимаемости жидкости, 1/атм; bп - коэффициент сжимаемости породы, 1/атм.

Упругие силы пласта - силы упругости породы. Степень упругости определяется коэффициентом объемного упругого расширения (коэффициент сжимаемости), показывающим, на какую часть от своего первоначального объема изменяется объем жидкости или горной породы при изменении давления на 1 атм:

bнефти = (7 - 140)? 10-5 1/атм; bпесчан. = (1, 4 - 1, 7)? 10-5 1/атм.

 

 

 

 

 

ПЛАСТ

Жидкости и газы находятся в пласте под давлением, которое называется пластовым. Пластовое давление - показатель, характеризующий природную энергию. Чем больше пластовое давление, тем большей энергией обладает пласт.

Начальное пластовое давление - давление в пласте до начала его разработки, как правило, находится в прямой связи с глубиной залегания нефтяного (газового) пласта и может быть определено приближенно по формуле:

 
 
Рпл.н=Нrg »104 Н

 


где: Рпл.н - начальное пластовое давление

Н - глубина залегания пласта, м

r - плотность воды, кг/м3

g - ускорение свободного падения (9.81 м/сек2)

104 - переводный коэффициент, Па.

Обычно пластовое давление бывает больше или меньше вычисленного по формуле. Такое его значение определяют при непосредственных замерах глубинным манометром, которым обычно определяют забойное давление - давление на забое работающей или простаивающей скважины.

При эксплуатации скважины важнейшее значение имеет перепад давления на забое, которое является определяющим при работе скважины. Оно представляет собой разницу между пластовым давлением и забойным давлением и называется депрессией.

Перепад давления = Рпл. – Рзаб.

Движение нефти начинается с какого – то расстояния, так называемого радиусом дренирования залежи, по мере движения к стволу скважины пластовой жидкости поток ее увеличивается, вследствие чего растет гидродинамическое давление. Наибольшего значения оно достигает в призабойной зоне пласта (ПЗП), равной 0.8 – 1.5 метра. Решающую роль играет забойное давление, чем ниже забойное давление, тем скважина может работать более продуктивно. Наибольший перепад давления в призабойной зоне пласта приводит к различным явлениям, например выпадение в осадок в этой зоне солей, твердых частиц, смол, асфальтенов, может возникнуть турбулентное движение жидкости. Все эти явления уменьшают течение жидкости из пласта и называются скин – эффектом.

 
 

Индекс продуктивности – J или PI представляет собой отношение дебита скважины к перепаду давлений на забое. Индекс продуктивности может быть как для нефти, так и для пластовой жидкости.

J = PI = qн / Рпл. – Рзаб.

Движение жидкости в коллекторе исследовано и происходит по закону Дарси и определяется по формуле при стабильном состоянии скважины

 
 

 

 


при псевдо-стабильном состоянии скважины

 
 


Где μ н - вязкость пластового флюида

Rскв. – радиус скважины

k – проницаемость

S – скин

β н – пластовый объемный фактор

rзал – радиус зоны пласта откуда осуществляется добыча

h –мощность пласта

 

Оборудование устья скважины

Фонтанная арматура служит для

· герметизации устья скважины,

· направления движения газожидкостной смеси в выкидную линию,

· регулирования и контроля режима работы скважины созданием противодавления на забое.

Фонтанную арматуру собирают из различных фланцевых тройников, крестовиков и запорных устройств (задвижек или кранов), которые соединяют между собой с помощью шпилек. Герметизируют соединения металлическим кольцом с овальным поперечным сечением, которое вставляют в канавки на фланцах и затем стягивают шпильками.

Фонтанная арматура состоит из

· трубной головки и

· фонтанной елки.

Трубную головку устанавливают на колонную головку. Она предназначена для подвески фонтанных труб и герметизации кольцевого пространства между фонтанными трубами и эксплуатационной колонной, а также для проведения различных технологических процессов, связанных с освоением и промывкой скважины, удалением отложений парафина из фонтанных труб, песка с забоя и т.д.

 

Трубная головка состоит из

· крестовины,

· тройника и

· переводной катушки.

Тройник устанавливают при оборудовании скважин двухрядным лифтом. При этом первый ряд труб крепится к переводной катушке с помощью переводной втулки, а второй ряд труб - с помощью переводной втулки. При оборудовании скважин только одним рядом фонтанных труб тройник на арматуре не устанавливают.

На крестовике и тройнике трубной головки ставят запорные задвижки, которые служат для соединения технологического оборудования межтрубным или кольцевым пространством, а также для их герметизации.

Фонтанная елка устанавливается на трубную обвязку. Она предназначена для направления продукции скважин в выкидные линии, регулирования отбора жидкости и газа, проведения различных исследовательских и ремонтных работ, а также при необходимости для закрытия скважины.

Фонтанная елка состоит из

· тройников,

· центральной задвижки,

· буферной задвижки,

· задвижек на выкидных линиях для перевода работы скважины на одну из них.

Буферная задвижка служит для перекрытия и установки лубрикатора, который применяется для спуска в скважину скребков, различных скважинных измерительных приборов под давлением, не останавливая работу фонтанной скважины. При эксплуатации скважины на буферную задвижку устанавливают буферную заглушку с манометром.

Все задвижки фонтанной елки, кроме задвижек на одной из выкидных линий, при работе скважины должны быть открыты. Центральную задвижку закрывают лишь в аварийных случаях, направляя жидкость через межтрубное пространство в выкидные линии трубной головки.

Фонтанную арматуру различают между собой по прочностным и конструктивным признакам: по рабочему или пробному давлению, размерам проходного сечения ствола, конструкции фонтанной елки и числу спускаемых в скважину рядов фонтанных труб, виду запорных устройств.

СИСТЕМА СБОРА и ПОДГОТОВКИ НЕФТИ и ГАЗА

Продукция нефтяных и газовых скважин – смесь

· нефти,

· газа,

· минерализованной воды,

· механических смесей (горных пород, затвердевшего цемента)

должна быть собрана из рассредоточенных на большой территории скважин и обработана как сырье для получения товарной продукции -

– товарной нефти,

– нефтяного газа,

– пластовой и сточной воды, которую можно было бы снова возвращать в пласт.

 

Сбор и подготовка нефти составляют единую систему процессов и представляют сложный комплекс

· трубопроводов,

· блочного автоматизированного оборудования и

· аппаратов, технологически связанных между собой.

Она должна обеспечить:

S Предотвращение потерь нефтяного газа и легких фракций нефти от испарения на всем пути движения и с самого начала разработки

S Отсутствие загрязнения окружающей среды, вызываемого разливами нефти и воды

S Надежность работы каждого звена и системы в целом

S Высокие технико-экономические показатели работы

 

Сбор нефти и газа на промыслах – это процесс транспортирования по трубопроводам нефти, воды и газа до центрального пункта сбора. Они транспортируются под действием напора, обусловленного

– давлением на устье скважин,

– давлением, создаваемого насосами (при необходимости).

Нефтепроводы по которым осуществляется сбор нефти от скважин называются сборные коллекторы, давление в коллекторе называется линейным давлением.

Выбор схемы внутрипромыслового сбора продукции скважин в зависимости от

природно-климатических условий,

– систем разработки месторождений,

– физико-химических свойств пластовых жидкостей,

– способов и объемов добычи нефти, газа и воды.

Это дает возможность

– замера дебитов каждой скважины;

– транспорта продукции скважин под давлением, имеющемся на устье скважин, на максимально возможное расстояние;

– максимальную герметизацию системы в целях исключения потерь газа и легких фракций нефти.

– возможность смешения нефтей различных горизонтов;

– необходимость подогрева продукции скважин в случае добычи высоковязких и высокопарафинистых нефтей.

 

На нефтяных месторождениях в основном применяются однотрубные системы сбора, при которых продукция скважин по выкидным линиям поступает на групповую замерную установку (ГЗУ), где проводится измерение дебитов (производительность) отдельных скважин, затем по трубопроводу нефть в газонасыщенном состоянии (без отделения нефти) направляется на ЦПС.

Помимо однотрубных систем сбора применяются и двухтрубные, когда после ГЗУ нефть поступает на дожимную насосную станцию (ДНС), где осуществляется первая ступень сепарации нефти (отделение основного количества газа от нефти). После ДНС нефть насосами откачивается на ЦПС, а газ по отдельному газопроводу за счет давления в сепараторе ДНС (обычно 0, 6-0, 8 Мпа) направляется также на ЦПС, где производится его подготовка к дальнейшему транспорту. Двухтрубные системы сбора продукции скважин применяются на больших по площади месторождениях нефти, когда давление скважин недостаточно для транспортировки продукции скважин до ЦПС.

На некоторых месторождениях осуществляется раздельный сбор продукции безводных и обводненных скважин. В этом случае продукция безводных скважин, не смешиваясь с продукцией обводненных скважин, поступает на ЦПС. Также раздельно собирают продукцию скважин, если нежелательно смешение нефтей разных горизонтов, например не содержащих и содержащих сероводород. Продукция обводненных скважин и продукция, которую нежелательно смешивать, по отдельным выкидным линиям и нефтегазосборным коллекторам транспортируется до ЦПС.

Основы нефтегазового дела.

ВВЕДЕНИЕ

Нефть стала известна людям более четырёх тысяч лет тому назад.

На заре цивилизации нефть не играла большой роли в быту и технике. До нас дошли скупые сведения о том, что она применялась греками, египтянами и ассирийцами преимущественно для медицинских целей, в строительном деле (асфальт), при изготовлении туши, в военном деле (" греческий огонь" ), а также для освещения комнат и смазки колёс.

Признание как дешёвого топлива и источника ценных продуктов нефть получила только за последние сто лет. В данный момент развитие техники и промышленности невозможно себе представить без использования нефти и продуктов её переработки.

Из нефти вырабатываются горючее для двигателей внутреннего сгорания, топлива для газовых турбин и котельных установок, смазочные масла, битумы для дорожных покрытий, сажа для резиновой промышленности, кокс для электродов и множество других промышленных и потребительских товаров.

Газы – попутные, природные, газы нефтепереработки, ароматические углеводороды, жидкие и твёрдые парафины – незаменимое сырьё для нефтехимической промышленности.

На базе этого дешёвого газового и нефтяного сырья производятся полимерные материалы, синтетические волокна, каучук, моющие средства, спирты, альдегиды и многие другие ценные материалы.

Развитие научно-технической базы человечества, освоение и ввод в эксплуатацию крупнейших по запасам нефти и газа месторождений осуществляется на основе достижений прогресса в области физики нефтяного пласта. Полученные новые данные относительно нефтяных и газовых пластов, коллекторских и фильтрационных свойств горных пород (пористость, проницаемость, насыщенность, электропроводность), физических свойств пластовых жидкостей и газов, фазовых состояний предельных углеводородных систем успешно применяются на практике.

Прогресс в области физики пласта, посредством более совершенного проектирования системы разработки, способствует поведению грамотной эксплуатации нефтяных и газовых месторождений, разработке и внедрению методов повышения компонентоотдачи пластов.

Современный инженер-нефтяник, занимающийся рациональной разработкой нефтяных и газовых месторождений, должен хорошо знать геологическое строение залежи, её физическую характеристику, физические и физико-химические свойства нефти, газа и воды, насыщающих породу; должен уметь правильно обработать и оценить данные, которые получены при вскрытии пласта и при его последующей эксплуатации. Эти данные позволяют определить начальные запасы углеводородов в залежи. Они необходимы для объективного представления о процессах, происходящих в пласте на различных стадиях его разработки. На этом комплексе сведений основывается проектирование разработки месторождения, выбор тех или иных методов искусственного воздействия на залежь, если это признаётся необходимым.

Три группы горных пород

По происхождению горные породы делятся на три группы: магматические (эффузивные и интрузивные), осадочные и метаморфические. Магматические и метаморфические горные породы слагают около 90 % объёма земной коры, однако, на современной поверхности материков области их распространения сравнительно невелики. Остальные 10 % приходятся на долю осадочных пород, занимающие 75 % площади земной поверхности.

Магматические горные породы по своему происхождению делятся на эффузивные и интрузивные. Эффузивные (вулканические) горные породы образуются при изливании магмы на поверхность земли. Интрузивные горные породы, напротив, возникают при изливании магмы в толще земной коры.

Магматические горные породы

По глубине формирования породы делятся на три группы: породы кристаллизующиеся на глубине — интрузивные горные породы, например, гранит. Они образуются при медленном остывании магмы и обычно хорошо раскристаллизованны; гипабисальные горные породы образуются при застывании магмы на небольших глубинах, и часто имеют неравномернозернистые структуры (долерит). Эффузивные горные породы формируются на земной поверхности или на дне океана (базальт, риолит, андезит).

Метаморфические горные породы.

Метаморфические горные породы образуются в толще земной коры в результате изменения (метаморфизма) осадочных или магматических горных пород. Факторами, вызывающими эти изменения, могут быть: близость застывающего магматического тела и связанное с этим прогревание метаморфизуемой породы; воздействие отходящих от этого тела активных химических соединений, в первую очередь различных водных растворов (контактовый метаморфизм), или погружение породы в толщу земной коры, где на неё действуют факторы регионального метаморфизма —высокие температуры и давления.

Типичными метаморфическими Г. п. являются гнейсы, разные по составу кристаллические сланцы, контактовые роговики, скарны, амфиболиты, мигматиты и др. Различие в происхождении и, как следствие этого, в минеральном составе Г. п. резко сказывается на их химическом составе и физических свойствах.

Осадочные горные породы.

Осадочные горные породы образуются на земной поверхности и вблизи неё в условиях относительно низких температур и давлений в результате преобразования морских и континентальных осадков. По способу своего образования осадочные породы подразделяются на три основные генетические группы: обломочные породы (брекчии, конгломераты, пески, алевриты) — грубые продукты преимущественно механического разрушения материнских пород, обычно наследующие наиболее устойчивые минеральные ассоциации последних; глинистые породы —дисперсные продукты глубокого химического преобразования силикатных и алюмосиликатных минералов материнских пород, перешедшие в новые минеральные виды; хемогенные, биохемогенные и органогенные породы — продукты непосредственного осаждения из растворов (например, соли), при участии организмов (например, кремнистые породы), накопления органических вещества (например, угли) или продукты жизнедеятельности организмов (например, органогенные известняки). Промежуточное положение между осадочными и вулканическими породами занимает группа эффузивно-осадочных пород. Между основными группами осадочных пород наблюдаются взаимные переходы, возникающие в результате смешения материала разного генезиса. Характерной особенностью осадочных Г. п., связанной с условиями образования, является их слоистость и залегание в виде более или менее правильных геологических тел (пластов).

Стратиграфическая таблица

 

Эратема Система, год и место установления Индекс Число отделов Число ярусов
Кайнозойская Четвертичная, 18229, Франция Неогеновая, 1853, Италия Палеогеновая, 1872, Италия Q N P    
Мезозойская Меловая, 1822, Франция Юрская, 1793, Швейцария Триасовая, 1834, Центр. Европа K J T
Палеозойская Пермская, 1841, Россия Каменноугольная, 1822, Великобритания Девонская, 1839, Великобритания Селурская, 1873, Великобритания Ордовикская, 1879, Великобритания Кембрийская, 1835, Великобритания P C D S O C

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 2162; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.141 с.)
Главная | Случайная страница | Обратная связь