Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Адсорбция на гидроксидах и других материалах



Адсорбция ионов на коллоидных и аморфных осадках, в том числе и на гидроксидах многовалент­ных металлов, отличается некоторыми особенностями от адсорбции на кристаллах. Важнейшим отличительным признаком является непостоянство свойств поверхности таких адсорбентов. Для гидроксидов характерны три вида адсорбции: ионообменная, молекулярная и хемосорбция. Наиболее хорошо изучена адсорбция ионов на Fе(ОН)3 и А1(ОН)3. На примере Се и К и показано, что гидроокиси Fе и А1 могут адсорбировать катионы путем первичной ионообмен­ной адсорбции в потенциалобразующей обкладке, имеющей поло­жительный заряд за счет катионов Fе3+ или А13+. Кроме первичной адсорбции на гидроокисях, наблюдается и вторичная ионообмен­ная адсорбция ионов, закономерности которой в общих чертах сов­падают с закономерностями вторичной адсорбции на полярных кристаллах.

Коллоидные и аморфные тела проявляют и специфический вид обменной адсорбции, заключающийся в том, что при образовании адсорбенты могут удерживать часть электролита. Этот электролит при определенных условиях вступает в обменные реакции, причем степень адсорбции тем больше, чем меньше очистка адсорбента от электролита. Такая адсорбция имеет место даже в весьма концент­рированных растворах, когда толщина двойного электрического слоя мала.

Хемосорбция наблюдается в том случае, если адсорбируемый ион образует на поверхности гидроокиси прочное химическое соеди­нение. Молекулярная адсорбция была замечена при изучении ад­сорбции серебра на полуторных окислах.

Адсорбция на угле. Адсорбция радиоактивных элементов на угле изучалась одновременно с адсорбцией стабильных изотопов. Было показано, что механизм адсорбции зависит от физико-хими­ческих свойств поверхности угля. В качестве адсорбентов могут использоваться зольные, обеззольные и окисленные угли. Разли­чают адсорбцию молекулярную, ионообменную, гидролитическую и другие типы.

Адсорбция радиоактивных элементов на стекле и бумаге. Важ­ное практическое значение имеет адсорбция радиоактивных эле­ментов на стекле и бумаге, из-за которой часто экспериментальные данные получаются ошибочными. Примером служат многочислен­ные исследования по определению растворимости сульфата радия. Для устранения вредного влияния адсорбции применяют удержива­ющие носители, которые препятствуют соосаждению. Например, полоний из разбавленных растворов в большой степени адсорбиру­ется на стеклянной поверхности. Добавление к полонию теллура—-антиносителя — снижает процент адсорбции. Поэтому при работе с изотопами всегда следует учитывать адсорбционные свойства стек­ла и фильтрованной бумаги. Но следует заметить, что имеющиеся работы по этому вопросу не дают достаточно полного представления о механизме адсорбции.

 

 

Статика сорбции

Теория межфазного распределения состоит из тех разделов: статики кинетики и динамики этого процесса.

Статика исследует термодинамически равновесное состояние сорбционных систем, т.е. фиксируется равновесное распределение вещества между двумя фазами строго определенной массы и или объема при заданных концентрации и температуре.

Практически процесс сорбции в статических условиях проводят в сосуде с определенны объемом раствора, содержащим сорбат или смесь сорбатов с известной концентрацией. В сосуд вносят навеску сорбента, полученную суспензию выдерживают до состояния равновесия при перемешивании. О наступлении равновесия судят по результатам измерения во времени содержания радионуклида в растворе или в фазе сорбента. При это следует иметь в виду, различают эмпирическое и термодинамическое равновесие. В первом случае критерием равновесия является практически не изменяемый во времени параметр процесса (удельная активность, концентрация, масса). О термодинамическом равновесии свидетельствует минимум свободной энергии. Как правило, эмпирического равновесия бывает вполне достаточно.

Итак, необходимо определить состояние системы в начальный момент (до контакта фаз) и после установления эмпирического равновесия. Введем некоторые обозначения.

M0- количество ядер радионуклида в исходном растворе; содержание радионуклида в фазе сорбента в начальный момент времени = 0. Исходная концентрация радионуклида в растворе С0= M0/V, где V - объем раствора.

После внесения в раствор сорбента начинается переход радионуклида их раствора в твердую фазу. При t=tp в системе наступает равновесное состояние, которое характеризуется равновесными параметрами: и - равновесные количества радионуклида соответственно в растворе и твердой фазе, причем = - .

= - равновесная концентрация радионуклида в растворе; = / - равновесная концентрация радионуклида в фазе сорбента.

Исходные и равновесные параметры используют для расчета характеристик сорбционной системы.

Степень сорбции: S= / = ( - ) / . Видно, что степень сорбции безразмерная величина, которая определяется непосредственно из опыта: = k∙ и = k∙ . где и - исходная и равновесная уделные скорости счета раствора до и после сорбции соответственно.

Распределительное отношение – ε = / = / ( - ) = S/ 1-S

 

Коэффициент распределения = / - устанавливает соотношение между равновесными концентрациями радионуклида в сорбенте и растворе. В общем случае - безразмерная величина.

В сорбционной практике коэффициент распределения часто рассчитывают иначе:

 

= , гдеV – объем раствора, мл; m- масса сорбента, г. В этом случае имеет размерность мл/г.

 

Коэффициент концентрирования - = / - показывает, во сколько раз изменилась концентрация радионуклида при переходе из раствора в сорбент.

Коэффициент очистки- = / , показывает, во сколько раз уменьшилась концентрация радионуклида в растворе после сорбции. Видим, что = .

Коэффициент разделения - (x, y) = / .

Следует отметить, что наиболее фундаментальной характеристикой межфазного распределения является коэффициент распределения. Зная его величину, можно рассчитать все прочие важные в технологическом отношении характеристики при заданном удельном содержании сорбента в системе. По своему физико-химическому смыслу характеризует меру специфичности (сродства) поглотителя к данному радионуклиду, а ( x, y) характеризует меру селективности (избирательности) поглотителя.

Итак, при анализе закономерностей статики межфазного распределения достаточно установить, какие факторы и каким образом влияют на величину коэффициента распределения. Это анализ необходим как для выбора оптимальных условий концентрирования, выделения и разделения радионуклидов с использованием методов межфазного распределения. Так и для выяснения вопроса о физико-химических особенностях поведения радионуклидов – микрокомпонентов в гетерогенных системах.

В общем случае на величину коэффициента распределения влияют следующие факторы:

Концентрация сорбата, концентрация фонового электролита, рН, удельная масса сорбента, температура и др.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-26; Просмотров: 1554; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь