Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Нагрузки и воздействия на магистральном газопроводе



Внутренние усилия в трубопроводах появляются от внешних и внутренних нагрузок. Эти нагрузки изменяются в зависимости от характеристик окружающей среды, параметров перекачиваемого продукта и т. д. Для линейной части трубопроводов основными являются из нагрузок – внутреннее давление, давление грунта, собственный вес труб и продукта, а из воздействий – изменение температуры, просадка и пучение грунта, давление оползающих грунтов.

В соответствии с принятой методикой расчёта прочности по предельным состояниям различают расчётные и нормативные нагрузки. Под нормативными понимают нагрузки , устанавливаемые нормативными документами и определяемые на основании статистического анализа при нормальной эксплуатации сооружения. Расчётной называют нагрузку, учитывающую возможное отклонение от нормативной: , где n – коэффициент надёжности по нагрузке. Коэффициенты надёжности n для различных видов нагрузки и воздействий регламентируются СНиП 2.05.06-85.

 

 

Рис. 6.1. Оценка остаточного ресурса трубопровода

 

Все нагрузки и воздействия на магистральный газопровод подразделяются на постоянные и временные, которые, в свою очередь, подразделяются на длительные, кратковременные и особые.

К постоянным нагрузкам и воздействиям относят те, которые действуют в течение всего срока строительства и эксплуатации трубопровода:

1. Собственный вес трубопровода, учитываемый в расчетах как вес единицы длины трубопровода

, (6.10)

где n – коэффициент надёжности по нагрузке (n = 1, 1); Dср – средний диаметр трубопровода, м; d – толщина стенки труб, м; gст – удельный вес стали, Н/м3.

2. Вес изоляционного покрытия и различных устройств, которые могут быть на трубопроводе. Для надземных трубопроводов ориентировочно можно принимать равным, примерно, 10% от собственного веса трубы. Точнее вес изоляционного покрытия определяют по формуле

, (6.11)

где n – коэффициент надёжности по нагрузке (n = 1, 1); gиз – удельный вес материала изоляции, Н/м3; Dиз и Dн – соответственно диаметр изолированного трубопровода и его наружный диаметр, м.

3. Давление грунта на единицу длины трубопровода. Для практических расчётов можно определять по формуле

, (6.12)

где n – коэффициент надёжности по нагрузке (n = 1, 2); gгр – удельный вес грунта, Н/м3; hср – средняя глубина заложения оси трубопровода, м; Dиз – диаметр изолированного трубопровода, м.

4. Гидростатическое давление воды на единицу длины трубопровода, определяемое весом столба жидкости над подводным трубопроводом

, (6.13)

где n – коэффициент надёжности по нагрузке (n = 1, 0); gв – удельный вес воды с учётом засоленности и наличия взвешенных частиц, Н/м3; h – высота столба воды над рассматриваемой точкой, м; Dф – диаметр изолированного и футерованного трубопровода, м.

5. Выталкивающая сила воды, приходящаяся на единицу длины полностью погруженного в воду трубопровода

, (6.14)

где Dф – наружный диаметр трубы с учётом изоляционного покрытия и футеровки, м; gв – удельный вес воды с учётом засоленности и наличия взвешенных частиц, Н/м3.

6. Воздействие предварительного напряжения, создаваемое за счёт упругого изгиба при поворотах оси трубопровода

, (6.15)

где – максимальное продольное напряжение в стенках трубы, обусловленное изгибом трубопровода, МПа; Е – модуль упругости (Е = 206000 МПа); Dн – наружный диаметр трубопровода, м; r – радиус изгиба оси трубопровода, м.

К длительным временным нагрузкам относятся следующие:

1. Внутреннее давление, которое устанавливается проектом. Внутреннее давление создаёт в стенках трубопровода кольцевые и продольные напряжения. Кольцевые напряжения определяют по формуле

, (6.16)

где n – коэффициент перегрузки по внутреннему давлению (n = 1, 1; 1, 15); Р – нормативное значение внутреннего давления, МПа; Dвн – внутренний диаметр трубы, м; d – толщина стенки трубы, м.

Продольные напряжения в стенке трубы от внутреннего давления определяются по формуле

, (6.17)

где m – коэффициент поперечной деформации (коэффициент Пуассона). Для сталей , т.е. среднее значение .

2. Вес перекачиваемого продукта на единицу длины трубопровода определяют по формуле

, (6.18)

где n – коэффициент надёжности по нагрузке (n = 1); Dвн – внутренний диаметр трубы, м.

3. Температурные воздействия, которые при невозможности деформаций вызывают в стенках трубопровода продольные напряжения

, (6.19)

где a – коэффициент линейного расширения (a = 12·106 1/град); Е – модуль упругости, МПа; , здесь t0 – максимально или минимально возможная температура стенок трубы при эксплуатации; tф – наименьшая или наибольшая температура, при которой фиксируется расчётная схема трубопровода (укладка трубы в траншею или на опоры).

К кратковременным нагрузкам и воздействиям на трубопровод относят следующие:

1. Снеговая нагрузка, приходящаяся на единицу длины трубопровода

, (6.20)

где n – коэффициент надёжности по нагрузке (n = 1, 4); m – коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на трубопровод (m = 0, 4); S0 – нормативное значение веса снегового покрова на 1 м2 горизонтальной поверхности земли; Dиз – диаметр изолированного трубопровода, м.

2. Нагрузка от обледенения наземного трубопровода, приходящаяся на единицу длины трубопровода

, (6.21)

где n = 1, 3; в – толщина слоя гололеда, принимаемая в соответствии со СНиП 2.01.07-85, мм; Dиз – диаметр изолированного трубопровода, см.

3. Ветровая нагрузка на единицу длины трубопровода, перпендикулярная его осевой вертикальной плоскости

, (6.22)

где n = 1, 2; w0 – нормативное значение ветрового давления, определяемое в соответствии со СНиП 2.01.07-85, Н/м2; k – коэффициент учитывающий изменение ветрового давления по высоте и тип местности, определяется в соответствии со СНиП 2.01.07-85; с – аэродинамический коэффициент (с = 0, 5).

Особыми нагрузками и воздействиями на магистральные трубопроводы принято называть те, которые возникают в результате селевых потоков, деформаций земной поверхности в карстовых районах и районах подземных выработок, а также деформаций грунта, сопровождающихся изменением его структуры. Эти нагрузки должны определяться на основании данных анализа грунтовых условий и их возможного изменения в процессе строительства и эксплуатации трубопровода.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-10; Просмотров: 1614; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь