Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Круговой процесс, цикл Карно



Круговой процесс — процесс, при котором газ, пройдя через ряд состояний, возвращается в исходное.
Если круговой процесс на диаграмме P-V протекает по часовой стрелке, то часть тепловой энергии, полученной от нагревателя, превращается в работу. Так работает тепловая машина.
Если круговой процесс на диаграмме P-V протекает против часовой стрелки, то тепловая энергия передается от холодильника (тела с меньшей температурой) к нагревателю (телу с большей тем пературой) за счет работы внешней силы. Так работает холодильная машина.

Коэффициент полезного действия тепловой машины равен отношению работы за цикл к полученной от нагревателя тепловой энергии:
.
Холодильный коэффициент холодильной машины равен отношению тепловой энергии, отобранной от холодильника за цикл, к затраченной работе:
.

 

10. Теплопрово́ дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.Способность вещества проводить тепло характеризуется коэффициентом теплопроводности (удельной теплопроводностью). Численно эта характеристика равна количеству теплоты, проходящей через образец материала толщиной в единицу длины (1 м), площадью в единицу площади (1 м2), за единицу времени (1 секунду) при единичном температурном градиенте (1 К). В метрической системе мер единицей измерения коэффициента теплопроводности является Вт/(м·K).Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании их температуры.

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

 

где — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, — коэффициент теплопроводности (удельная теплопроводность), — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье. [1]

Конвективный теплообмен

процесс переноса тепла, происходящий в движущихся текучих средах (жидкостях либо газах) и обусловленный совместным действием двух механизмов переноса тепла — собственно конвективного переноса и теплопроводности (См. Теплопроводность). Таким образом, в случае К. т. распространение тепла в пространстве осуществляется за счёт переноса тепла при перемещении текучей среды из области с более высокой температурой в область с меньшей температурой, а также за счёт теплового движения микрочастиц и обмена кинетической энергией между ними. В связи с тем, что для неэлектропроводных сред интенсивность конвективного переноса очень велика по сравнению с теплопроводностью, последняя при ламинарном течении (См. Ламинарное течение)играет роль лишь для переноса тепла в направлении, поперечном течению среды. Роль теплопроводности при К. т. более значительна при движении электропроводных сред (например, жидких металлов). В этом случае теплопроводность существенно влияет и на перенос тепла в направлении движения жидкости. При турбулентном течении (См. Турбулентное течение) основную роль в процессе переноса тепла поперек потока играет пульсационное перемещение турбулентных вихрей поперек течения жидкости. Участие теплопроводности в процессах К. т. приводит к тому, что на эти процессы оказывают существенное влияние теплофизические свойства среды: коэффициент теплопроводности, Теплоёмкость, Плотность.

В связи с тем, что в процессах К. т. важную роль играет конвективный перенос, эти процессы должны в значительной мере зависеть от характера движения жидкости, то есть от значения и направления скорости среды, от распределения скоростей в потоке, от режима движения жидкости (ламинарное течение либо турбулентное). При больших (сверхзвуковых) скоростях движения газа на процессы К. т. начинает влиять распределение давления в потоке. Если движение жидкости обусловлено действием некоторого внешнего побудителя (насоса, вентилятора, компрессора и т.п.), то такое движение называют вынужденным, а происходящий при этом процесс К. т. — вынужденной конвекцией. Если движение жидкости вызвано наличием неоднородного поля температуры, а следовательно, и неоднородной плотности в среде, то такое движение называют свободным или естественным, а процесс К. т. — свободной или естественной конвекцией. На практике встречаются и такие случаи, когда приходится учитывать как вынужденную, так и свободную конвекцию (См. Конвекция).

Наиболее интересным с точки зрения технических приложений случаем К. т. является конвективная теплоотдача, то есть процесс двух К. т., протекающий на границе раздела двух фаз (твердой и жидкой, твердой и газообразной, жидкой и газообразной). При этом задача расчета состоит в нахождении плотности теплового потока на границе раздела фаз, то есть величины, показывающей, какое количество тепла получает или отдает единица поверхности раздела фаз за единицу времени. Помимо указанных выше факторов, влияющих на процесс К. т., плотность теплового потока зависит также от формы и размеров тела, от степени шероховатости поверхности, а также от температур поверхности и теплоотдающей или тепловоспринимающей среды.

Для описания конвективной теплоотдачи используется формула:

q= α (Т0—Тст),

где q плотность теплового потока на поверхности, вт/м2; α коэффициент теплоотдачи, вт/(м2∙ °С); T0 и Тст — температуры среды (жидкости или газа) и поверхности соответственно. Величину T0 — Тст часто обозначают Δ Т и называется температурным напором (См. Температурный напор). Коэффициент теплоотдачи α характеризует интенсивность процесса теплоотдачи; он возрастает при увеличении скорости движения среды и при переходе от ламинарного режима движения к турбулентному в связи с интенсификацией конвективного переноса. Он также всегда больше для тех сред, у которых выше коэффициент теплопроводности. Коэффициент теплоотдачи существенно повышается, если на поверхности происходит фазовый переход (например, испарение или конденсация), всегда сопровождающийся выделением (поглощением) скрытой теплоты. На значение коэффициент теплоотдачи сильное влияние оказывает Массообмен на поверхности.

Лучистый теплообмен

(радиационный теплообмен) - процесс переноса энергии, обусловленный превращением части внутр. энергии вещества в энергию излучения (испусканием эл.-магн. волн, или фотонов), переносом излучения в пространстве со скоростью света и его поглощением веществом (обратным превращением энергии эл.-магн. волн во внутр. энергию). При этом перенос излучения в материальной среде может сопровождаться поглощением и рассеянием, а также собств. излучением среды. Однако для Л. т. наличие материальной среды между телами не является необходимым, что принципиально отличает Л. т. от др. видов теплообмена ( теплопроводности, конвективного теплообмена). Передача теплоты излучением может происходить в разл. областях спектра (в зависимости от темп-ры).

Испускание лучистой энергии (тепловое излучение) абсолютно чёрного тела описывается Стефана - Больцмана законом излучения и Планка законом излучения. Применительно к условиям термодинамич. равновесия закон Стефана - Больцмана даёт выражение для плотности потока интегрального излучения в полусферу, испускаемого поверхностью абсолютно чёрного тела в пределах полусферич. телесного угла во всём интервале длин волн от 0 до, [Вт/м 2], где Вт/м 2 К 4 - Стефана - Больцмана постоянная, Т - темп-pa тела. Плотность потока моно-хроматич. излучения в полусферу в узком интервале длин волн описывается ф-лой Планка:

 

Здесь C1 и С2 - константы, Вт*м 2, а м*К. Излучат. свойства реальных тел отличаются от свойств абсолютно чёрного тела, что учитывается с помощью спец. коэф.- степени черноты, к-рый в зависимости от того, относится он к интегральному или монохроматич. излучению, наз. интегральной степенью черноты () или спектральной степенью черноты (). В результате плотности потоков интегрального и монохроматич. излучения для реального тела описываются выражениями ; . Тела, у к-рых спектральная степень черноты не зависит от длины волны излучения, наз. серыми телами.


Поделиться:



Популярное:

  1. Антибиотики гр тетрациклина и левомицетина.
  2. В жизненном цикле багрянок имеются следующие фазы (поколения)
  3. В процессе операционного цикла
  4. В340Ф30 Станок токарно-револьверный с ЧПУ
  5. Вегетативно-репродуктивный цикл и особенности рекомбинации у вирулентных фагов
  6. Виды экономических циклов и причины циклических колебаний.
  7. Виды экономических циклов. Теория длинных волн Н.Кондратьева.
  8. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ МОТОЦИКЛА И МЕТОДЫ ИХ УСТРАНЕНИЯ
  9. Вопрос 19. Определение потребности в оборотных средствах корпорации. Понятие производственного и финансового циклов.
  10. Вопрос № 18 Оценка деловой активности предприятия. Циклы деятельности предприятия.
  11. ВОСЕМНАДЦАТЬ ОСНОВНЫХ ЦИКЛОВ ИСТОРИЧЕСКОЙ ГРУППОВОЙ ФАНТАЗИИ В АМЕРИКЕ
  12. Гл. обозн. процесс, выр-ет это зн-ие в формах вида, t, накл., залога, числа, лица и в прош. t рода, и вып-ет f прост. глаг. сказ. Под процессом подразум. разл. явл. (он шире действия).


Последнее изменение этой страницы: 2016-04-10; Просмотров: 1211; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь