Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные характеристики проводниковых материалов



 

Основными характеристиками проводниковых материалов являются:

1. Удельное электрическое сопротивление.
2. Температурный коэффициент сопротивления.
3. Теплопроводность.
4. Контактная разность потенциалов и термоэлектродвижу-щая сила.
5. Временное сопротивление разрыву и относительное удлинение при растяжении.

1. Удельное электрическое сопротивление р — величина, характеризующая способность материала оказывать сопротивление электрическому току. Удельное сопротивление выражается формулой:

Для длинных проводников (проводов, шнуров, жил кабелей, шин) длину проводника l обычно выражают в метрах, площадь поперечного сечения S — в мм2, сопротивление проводника r — в ом, тогда размерность удельного сопротивления

 

Данные удельных сопротивлений различных металлических проводников приведены на стр. 97.

2. Температурный коэффициент сопротивления — величина, характеризующая изменение сопротивления проводника в зависимости от температуры.

Средняя величина температурного коэффициента сопротивления в интервале температур t2°—t1° может быть найдена по формуле:

Данные температурных коэффициентов сопротивления различных проводниковых материалов приведены на стр. 95.

3. Теплопроводность — величина, характеризующая количество тепла, проходящее в единицу времени через слой веще-

Из приведенных данных видно, что наибольшей теплопроводностью обладают металлы. У неметаллических материалов теплопроводность значительно ниже. Она достигает особенно низких значений у пористых материалов, которые применяют специально для тепловой изоляции. Согласно электронной теории высокая теплопроводность металлов обусловливается теми же электронами проводимости, что н электропроводность.

4. Контактная разность потенциалов и термоэлектродвижущая сила.

Как было указано выше, положительные ионы металла расположены в узлах кристаллической решетки, образующей как бы ее каркас. Свободные электроны заполняют решетку наподобие газа, который называют иногда «электронным газом». Давление электронного газа в металле пропорционально абсолютной температуре и числу свободных электронов в единице объема, которое зависит от свойств металла. При соприкосновении двух разнородных металлов в месте соприкосновения происходит выравнивание давления электронного газа. В результате диффузии электронов металл, у которого число электронов уменьшается, заряжается положительно, а металл, у которого число электронов увеличивается, заряжается отрицательно. В месте контакта возникает разность потенциалов. Эта разность пропорциональна разности температур металлов и зависит от их вида. В замкнутой цепи возникает термоэлектрический ток. Э. д. с, которая создает этот ток, называется термоэлектродвижущей силой (термо-э. д. с).

Явление контактной разности потенциалов применяется в технике для измерения температуры при помощи термопар (см. 56). При измерении малых токов и напряжений в цепи в местах соединения различных металлов может возникнуть большая разность потенциалов, которая будет искажать результаты измерений. В этом случае необходимо подобрать материалы так, чтобы точность измерения была высокой.

5. Временное сопротивление разрыву и относительное удлинение при растяжении.

При выборе проводов, помимо сечения, материала проводов, изоляции, необходимо учитывать их механическую прочность. Особенно это касается проводов воздушных линий электропередач. Провода испытывают растяжение. Под действием

 

УРОК №7

Электрическое сопротивление

 

Электри́ ческое сопротивле́ ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1].

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиямиимпеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Единицы и размерности

Размерность электрического сопротивления в Международной системе величин: dim R = L2MT − 3I − 2. В Международной системе единиц (СИ), основанной на Международной системе величин, единицей сопротивления является ом (русское обозначение: Ом; международное: Ω ). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются[2]:

· статом (в СГСЭ и гауссовой системе, 1 statΩ = (109 c− 2) с/см = 898 755 178 736, 818 Ом (точно) ≈ 8, 98755·1011 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер);

· абом (в СГСМ, 1 abΩ = 1·10− 9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением1 абвольт течёт ток 1 абампер).

Размерность сопротивления в СГСЭ и гауссовой системе равна TL− 1 (то есть совпадает с размерностью обратнойскорости, с/см), в СГСМ — LT− 1 (то есть совпадает с размерностью скорости, см/с)[3].

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом− 1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс[4].

Физика явления

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².
Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.


Поделиться:



Популярное:

  1. Delphi. Основные характеристики и терминология
  2. I. Основные профессиональные способности людей (Уровень 4)
  3. II. ОСНОВНЫЕ ЖАЛОБЫ БОЛЬНОГО
  4. II. Основные расчетные величины индивидуального пожарного риска
  5. VIII. Основные направления просветительской, популяризаторской и коммуникативной деятельности библиотек
  6. XVI. Основные правовые системы современности.
  7. А. Жизненный цикл продукта и его основные стадии. Оценка конкурентоспособности продукта
  8. А. И. Черевко. Расчет и выбор судовых силовых трансформаторов для полупроводниковых преобразователей. Севмашвтуз, 2007.
  9. Автоматизация учета использования материалов в СПК колхоз «Восход»
  10. Авторитарный режим: основные черты и виды
  11. АДАПТАЦИИ К ПАРАЗИТИЧЕСКОМУ ОБРАЗУ ЖИЗНИ. ОСНОВНЫЕ ТЕНДЕНЦИИ
  12. Акриловые материалы холодного отверждения. Классификация эластичных базисных материалов. Сравнительная оценка полимерных материалов для искусственных зубов с материалами другой химической природы.


Последнее изменение этой страницы: 2016-05-29; Просмотров: 4905; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь