Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Полимерные постоянные магниты (магнитопласты)



Изготавливаются из смеси магнитного порошка и связующей полимерной компоненты (например резины). Достоинством магнитопластов является возможность получения сложных форм изделий с высокой точностью размеров, а также высокая коррозионная устойчивость в сочетании с большой величиной удельного сопротивления и малым весом.

Наиболее широко распространены ферритовые магниты. Для применений при обычных температурах самые сильные постоянные магниты делаются из сплавов, содержащих неодим.

Они используются в таких областях, как магнитно-резонансная томография, сервоприводы жёстких дисков и создание высококачественных динамиков

 

 

22. Явление электромагнитной индукции. Правило Ленца. Закон Фарадея.

В 1831 г. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром, возникает электрический ток. Это явление называют электромагнитной индукцией, а возникающий ток индукционным. Явление электромагнитной индукции свидетельствует о том, что при изменениях магнитного потока в контуре возникает электродвижущая сила индукции - ε i. Величина ε i не зависит от способа, которым осуществляется изменение магнитного потока Ф, и определяется лишь скоростью изменения Ф, т. е. значением dФ/dt. При изменении знака dФ/dt. направление ε i также меняется.

Ленц установил правило, позволяющее найти направление индукционного тока. Правило Ленца гласит, что индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Если, например, изменение Ф вызвано перемещением контура 2, то возникает индукционный ток такого направления, что сила взаимодействия с первым контуром противится движению контура. При приближении контура 2 к контуру 1

(см. рис. 60.1 Сав 181) возникает ток I2, магнитный момент которого направлен противоположно полю тока. Следовательно, на контур 2 будет действовать сила, отталкивающая его от контура При удалении контура 2 от контура 1 возникает ток I2 так что сила, действующая на контур 2, направлена к контуру 1.

Пусть оба контура неподвижны и ток в контуре 2 индуцируется путем изменения тока I1 в контуре 1. В этом случае возникает ток I2 такого направления, что создаваемый им собственный магнитный поток стремится ослабить изменения внешнего потока, приведшие к появлению индукционного тока. При увеличении I1, т. е. возрастании внешнего магнитного потока, направленного вправо, возникает ток I2, создающий поток, направленный влево. При уменьшении I1 возникает ток I2, собственный магнитный поток которого направлен так же, как и внешний поток, и, следовательно, стремится поддержать внешний поток неизменным.

 

Возьмем контур с подвижной перемычкой длины l (рис. 61.1, а, Сав 183).

Поместим его в однородное магнитное поле, перпендикулярное к плоскости контура и направленное за чертеж. Приведем перемычку в движение со скоростью v. С той же скоростью станут перемещаться относительно поля и носители тока в перемычке — электроны. В результате на каждый электрон начнет действовать направленная вдоль перемычки магнитная сила.

Действие этой силы эквивалентно действию на электрон электрического поля напряженности E =[ vB ]. Это поле не электростатического происхождения.

 

Его циркуляция по контуру дает величину э. д. с, индуцируемой в контуре: (подынтегральная функция отлична от нуля лишь на образуемом перемычкой участке 1—2). Чтобы по знаку ε i можно было судить о направлении, в котором действует э. д. с, будем считать ε i положительной в том случае, когда ее направление образует с направлением нормали к контуру правовинтовую систему.

Выберем нормаль так, как показано на рис. 61.1.

 

 

Тогда при вычислении циркуляции нужно обходить контур по часовой стрелке и соответственно выбирать направление векторов d l.

, где 1 — вектор, показанный на рис. 61.1, б.

 

Осуществим в полученном выражении циклическую перестановку сомножителей, после чего умножим и разделим его на dt Т. к. , где dS — приращение площади контура за время dt. По определению потока выражение В dS=Bn dS представляет собой поток через площадку dS, т. е. приращение потока через контур. Таким образом, .

Закон Фарадея можно сформулировать таким образом: э.д.с. электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром.

 

Этот закон является универсальным: э.д.с. не зависит от способа изменения магнитного потока. Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Мы получили, что эдс индукции и фоток имеют противоположные знаки. Единицей потока магнитной индукции в СИ служит в е б е р (Вб), который представляет собой поток через поверхность в 1 м2, пересекаемую нормальными к ней линиями магнитного поля с В, равной 1 Тл. При скорости изменения потока, равной 1 Вб/с, в кон-туре индуцируется э. д. с, равная 1 В. В гауссовой системе формула имеет вид .

 

 

 

23. Явление самоиндкуции. Индуктивность проводников. Индуктивность соленоида - пустого и заполненного веществом.

Электрический ток, текущий в любом контуре, создает пронизывающий этот контур магнитный поток . При изменениях I изменяется также и , вследствие чего в контуре индуцируется э. д. с. Это явление называется самоиндукцией.

В соответствии с законом Био — Савара магнитная индукция В пропорциональна силе тока, вызвавшего поле. Отсюда вытекает, что ток I и создаваемый им магнитный поток через контур пропорциональны друг другу

Коэффициент пропорциональности L между силой тока и полным магнитным потоком называется индуктивностью контура.

Линейная зависимость от I наблюдается только в том случае, если магнитная проницаемость µ среды, которой окружен контур, не зависит от напряженности поля Н, т. е. в отсутствие ферромагнетиков. При неизменной силе тока I полный поток W может изменяться за счет изменений формы и размеров контура.

Cлед. индуктивность L зависит от геометрии контура (т. е. его формы и размеров), а также от магнитных свойств (µ) окружающей контур среды. Если контур жесткий и поблизости от него нет ферромагнетиков, индуктивность L является постоянной величиной.

 

 

За единицу индуктивности в СИ принимается индуктивность такого проводника, у которого при силе тока в нем в 1 А возникает сцепленный с ним полный поток , равный 1 Вб. Эту единицу называют генри (Гн).

В гауссовой системе индуктивность имеет размерность длины. В соответствии с этим единицу индуктивности в этой системе называют сантиметром.

Вычислим индуктивность соленоида. Возьмем соленоид такой длины, чтобы его можно было практически считать бесконечным.

При протекании по нему тока I внутри соленоида возбуждается однородное поле, индукция которого равна (в вакууме).

 

Поток через каждый из витков равен Ф=BS, а

полный магнитный поток, сцепленный с соленоидом,

где l — длина соленоида (которая предполагается очень большой), S — площадь поперечного сечения, n — число витков на единицу длины (произведение nl дает полное число витков N). Сопоставление формул и дает для индуктивности очень длинного соленоида выражение в вакууме, где V=lS — объем соленоида.

 

Есди соленоид заполнен веществом с магнитной проницаемостью µ, то при заданном токе I магнитная индукция возрастает в µ раз, и след. индуктивность длинного соленоида, заполненного веществом .

При изменениях силы тока в контуре возникает э. д. с. Самоиндукции ε s., равна

 

 

Если при изменениях силы тока индуктивность остается постоянной (что возможно лишь при отсутствии ферромагнетиков), выражение для э. д. с. самоиндукции имеет вид

. Знак минус в этой формуле обусловлен правилом Ленца, согласно которому индукционный ток бывает направлен так, чтобы противодействовать причине, его вызывающей.

 

 

 

24. Энергия магнитного поля в соленоиде. Плотность энергии магнитного поля.

Рассмотрим цепь, изображенную на рис. 67.1 (Сав. 195). При замкнутом ключе в соленоиде установится ток I, который обусловит магнитное поле, сцепленное с витками соленоида. Если разомкнуть ключ, то через сопротивление R будет некоторое время течь постепенно убывающий ток, поддерживаемый возникающей в соленоиде э. д. с. самоиндукции. Работа, совершаемая этим током за время dt, равна .

Если индуктивность соленоида не зависит от I (L=const), то =L dI и выражение

 

 

Проинтегрировав это выражение по l в пределах от первоначального значения I до нуля, получим работу, совершаемую в цепи за все время, в течение- которого происходит исчезновение магнитного поля, . Работа идет на приращение внутренней энергии сопротивления R, соленоида и соединительных проводов (т. е. на их нагревание). Совершение этой работы сопровождается исчезновением магнитного поля, которое первоначально существовало в окружающем соленоид пространстве. Поскольку никаких других изменений в окружающих электрическую цепь телах не происходит, ос-

тается заключить, что магнитное поле является носителем энергии, за счет

 

Таким образом, мы приходим к выводу, что проводник с индуктивностью L, по которому течет ток силы I, обладает энергией ,

которая локализована в возбуждаемом током магнитном поле.

Выразим энергию магнитного поля через величины, характеризующие само поле. В случае очень длинного (практически бесконечного) соленоида . Подставив эти значения L и I в выражение и произведя преобразования, получим

Магнитное поле бесконечно длинного соленоида однородно и отлично от нуля только внутри соленоида. Следовательно, энергия локализована внутри соленоида и распределена по его объему с постоянной плотностью w, которую можно найти, разделив W на V. Произведя это деление, получим

Плотность энергии магнитного поля можно записать в виде .

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенную в любом объеме V. Для этого

 

нужно вычислить интеграл

 

которой и совершается работа.

 

.\

 

 

 

25 Квазистационарный переменный электрический ток. Условие квазистационарности. Закон Ома для цепей квазистационарных токов. Активное и реактивное (емкостное, индуцированное) сопротивления, их зависимость от частоты тока.

В цепях постоянного тока распределение электрических зарядов на проводниках и токов на участках цепи стационарно, то есть неизменно во времени. Если на каком-то участке цепи происходят изменения силы тока или напряжения, то другие участки цепи могут «почувствовать» эти изменения только через некоторое время, которое по порядку величины равно времени τ распространения электромагнитного возмущения от одной точки цепи к другой.

Так как электромагнитные возмущения распространяются с конечной скоростью, равной скорости света c, то где l – расстояние между наиболее удаленными точками цепи. Если это время τ много меньше длительности процессов, происходящих в цепи, то можно считать, что в каждый момент времени сила тока одинакова во всех последовательно соединенных участках цепи. Процессы такого рода в электрических цепях называются квазистационарными.

Квазистационарные процессы можно исследовать с помощью законов постоянного тока, если применять эти законы к мгновенным значениям сил токов и напряжений на участках цепи.

 

 

Из-за огромного значения скорости света время установления электрического равновесия в цепи оказывается весьма малым. Поэтому к квазистационарным можно отнести многие достаточно быстрые в обычном смысле процессы. Например, быстрые колебания в радиотехнических цепях с частотами порядка миллиона колебаний в секунду и даже выше очень часто еще можно рассматривать как квазистационарные

Простыми примерами квазистационарных процессов могут служить процессы, происходящие в RC- и RL-цепях при подключении и отключении источника постоянного тока.

 

 

При рассмотрении электрических колебаний приходится иметь дело с токами, изменяющимися со временем. Токи, удовлетворяющие такому условию, называются квазистационарными. Для периодически изменяющихся токов условие квазистационарности имеет вид , где Т — период изменений.

Квазистационарный ток - относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов (прямая пропорциональность между током и напряжением.

Подобно постоянным токам, К. т. имеет одинаковую силу тока во всех

 

Однако при расчёте К. т. (в отличие от расчёта цепей постоянного тока) необходимо учитывать возникающую при изменениях тока эдс индукции. Индуктивности, ёмкости, сопротивления ветвей цепи К. т. могут считаться сосредоточенными параметрами.

Соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:

 
(*)

.

 

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C.

Физические величины R, и ω L называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.

 

сечениях неразветвлённой цепи

 

 

26. Электрический колебательный контур. Частота собственных колебаний тока в контуре. Добротность колебательного контура.

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур (рис. 5.2.1).

 

 

 

Рисунок 5.2.1.

Последовательный RLC-контур.

 

 

Когда ключ K находится в положении 1, конденсатор заряжается до напряжения . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может

иметь колебательный характер.

Закон Ома для замкнутой RLC-цепи, не содержащей внешнего источника тока, записывается в виде

где – напряжение на конденсаторе, q – заряд конденсатора, – ток в цепи

 

В правой части этого соотношения стоит ЭДС самоиндукции катушки. Уравнение, описывающее свободные колебания в RLC-контуре, может быть приведено к следующему виду, если в качестве переменной величины выбрать заряд конденсатора q(t):

  Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0). Тогда
 
(*)

Здесь принято обозначение: Уравнение (*) описывает свободные колебания в LC-контуре в отсутствие затухания. Оно в точности совпадает по виду с уравнением свободных колебаний груза на пружине в отсутствие сил трения.

 

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону

 
q(t) = q0cos(ω t + φ 0).
 

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний

 
 

Амплитуда q0 и начальная фаза φ 0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия. В частности, для процесса колебаний, который начнется в контуре (рис. 5.2.1) после переброса ключа K в положение 2, q0 = Cε, φ 0 = 0.

 

При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной:

   

Все реальные контура содержат электрическое сопротивление R. Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими (рис. 5.2.3).

 

 

Рисунок 5.2.3.

Затухающие колебания в контуре.

Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: Fтр = – β υ. Коэффициент β в этой формуле аналогичен сопротивлению R в электрическом контуре. Уравнение свободных колебаний в контуре при наличии затухания имеет вид

 
(**)

 

 

Физическая величина δ = R / 2L называется коэффициентом затухания. Решением этого дифференциального уравнения является функция

 
 

которая содержит множитель exp (–δ t), описывающий затухание колебаний. Скорость затухания зависит от электрического сопротивления R контура. Интервал времени в течение которого амплитуда колебаний уменьшается в e ≈ 2, 7 раза, называется временем затухания.

.

 

 

Добротности Q колебательной системы:

где N – число полных колебаний, совершаемых системой за время затухания τ. Добротности Q любой колебательной системы, способной совершать свободные колебания, может быть дано энергетическое определение:

   

 

Для RLC-контура добротность Q выражается формулой

   

Добротность электрических контуров, применяемых в радиотехнике, обычно порядка нескольких десятков и даже сотен.

Следует отметить, что собственная частота ω свободных колебаний в контуре с не очень высокой добротностью несколько меньше собственной частоты ω 0 идеального контура с теми же значениями L и C. Но при Q ≥ (5 – 10) этим различием можно пренебречь

 

 

 

 

 

27. Вынужденные колебания тока в LCR контуре, уравнение их описывающее. Явление электрического резонанса.

Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями.

Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Периодический внешний источник обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.

Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω 0.

Если частота ω 0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника.

Для установления стационарных вынужденных колебаний необходимо некоторое время Δ t после включения в цепь внешнего источника. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.

 

 

Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока.

Рассмотрим последовательный колебательный контур, то есть RLC-цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 5.3.1): e(t) = 0 cos ω t, где 0 – амплитуда, ω – круговая частота.

 

 

Вынужденные колебания в контуре.

Предполагается, что для электрической цепи, изображенной на рис. 5.3.1, выполнено условие квазистационарности. Поэтому закон Ома можно записать для мгновенных значений токов и напряжений:

Величина – это перенесенная с изменением знака из правой части уравнения в левую ЭДС самоиндукции катушки. Эту величину принято называть напряжением на катушке индуктивности.

 

 

Уравнение вынужденных колебаний можно записать в виде

Частное решение уравнения имеет вид

, ,

Можно получить формулы для I ,

Из выражения для I0 видно, что амплитуда тока принимает максимальное значение при условии

   

или

 

Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω 0 электрической цепи называется электрическим резонансом. При резонансе

При последовательном резонансе (ω = ω 0) амплитуды UC и UL напряжений на конденсаторе и катушке резко возрастают:

Добротность RLC-контура:

Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в Q раз превышают амплитуду напряжения внешнего источника.

 

 

 

28. Электромангитное поле. Вихревое электрическое поле. Первое уравнение Максвелла в интегральной форме как обобщение закона электромагнитной индукции Фарадея.

Электромагнитное поле – это неразрывно связанные между собой и порождающие друг друга переменные электрическое и магнитное поля.

Впервые понятие “ электромагнитное поле ” было введено и математически строго описано Джеймсом Клерком Максвеллом. Уравнения Максвелла были опубликованы им в 1873 году в книге “Трактат об электричестве и магнетизме”, т.е. почти 130 лет тому назад.

Громоздкий механистический вывод отдельных уравнений был опубликован в его более ранних статьях. В “Трактате” же Максвелл их вывел с помощью аппарата векторного анализа, показав, что переменные электрическое и магнитное поля находятся в неразрывной взаимосвязи, совокупность которых представляет собой единое электромагнитное поле. Основными векторами, характеризующими электромагнитное поле, являются индукция B и напряженность H магнитного поля, смещение D и напряженность E электрического поля и плотность электрического тока J. В указанных современных обозначениях система уравнений Максвелла, заключающая в себе теорию электромагнитного поля, записывается следующим образом.

 

В 60-х годах XIX в. английский ученый Дж. Максвелл (1831-1879) обобщил экспериментально установленные законы электрического и магнитного полей и создал законченную единую теорию электромагнитного поля. Она позволяет решить основную задачу электродинамики: найти характеристики электромагнитного поля заданной системы электрических зарядов и токов. Согласно закону электромагнитной индукции Фарадея, всякое изменение магнитного поля во времени приводит к возникновению ЭДС индукции и появлению индукционного тока в проводниках, находящихся в этом магнитном поле.

 

 

Многочисленные опыты показали, что ЭДС совершенно не зависит от проводника, его свойств (однородности, сопротивления). Опыт показывает, что в случае электромагнитной индукции сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре. Их возникновение также нельзя объяснить силой Лоренца, так как она на неподвижные заряды не действует. Следовательно, поле сторонних сил создается в самом пространстве, где происходит изменение магнитного поля и присутствие замкнутого проводника вовсе не обязательно: контур, в котором наводится ЭДС индукции, является лишь своего рода индикатором, обнаруживающим это поле.

Максвелл выдвинул гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле , циркуляция которого и является причиной возникновения ЭДС электромагнитной индукции в контуре:

(5.1)

Уравнение (5.1) называют первым уравнением Максвелла. Смысл его заключается в том, что изменяющееся магнитное поле порождает вихревое электрическое, а последнее в свою очередь вызывает в окружающем диэлектрике или вакууме изменяющееся магнитное поле.

 

Поскольку магнитное поле создается электрическим током, то, согласно Максвеллу, вихревое электрическое поле следует рассматривать как некоторый ток, который протекает как в диэлектрике, так и в вакууме. Максвелл назвал этот ток током смещения. Механизм тока смещения будет рассмотрен ниже.

Можно показать, что циркуляция вектора вдоль любого замкнутого контура не равна нулю и след. электрическое поле, возбуждаемое переменным магнитным полем, как и само магнитное поле, является вихревым.

 

 

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-29; Просмотров: 612; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.114 с.)
Главная | Случайная страница | Обратная связь