Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Методы морфологического анализа



Под морфологией понимают внешнее строение объекта, а так­же форму, размеры и взаимное расположение (топографию) обра­зующих его структурных элементов (частей целого, включений, деформаций, дефектов и т. п.) на поверхности и в объеме, возни­кающих при изготовлении, существовании и взаимодействии объ­екта в расследуемом событии. Наиболее распространенными ме­тодами морфологического анализа являются методыопти­ческой микроскопии — совокупность методов наблю­дения и исследования с помощью оптического микроскопа:

Ультрафиолетовая и инфракрасная микроскопия позволяет проводить исследования за пределами видимой области спектра. Ультрафиолетовая микроскопия (250—400 нм) применяется для исследования биологических объектов (например, следы крови, спермы), инфракрасная микро­скопия (0, 75—1, 2 мкм) дает возможность изучать внутрен­нюю структуру объектов, непрозрачных в видимом свете (кристаллы; минералы; некоторые виды стекла; следы вы­стрела; залитые, заклеенные тексты).

Стереоскопическая микроскопия позволяет видеть предмет объемным. Применяется для исследования практически всех видов объектов (следы человека и животных, докумен­ты, лакокрасочные покрытия, металлы и сплавы, волокна, минералы, пули и гильзы и т.д.). С помощью двух окуляров создают объемное изображение. Микроскопы, как правило, снабжены насадкой для фотографирования.

• Сравнительные микроскопы (типа МИС, МС, МСК) име­ют спаренную оптическую систему, что позволяет произво­дить одновременное исследование двух объектов. Микро­скопы специальные криминалистические типа МСК по­зволяют наблюдать изображение не только с помощью окуляра, но и на специальном экране. Современные срав­нительные микроскопы, оснащенные 'телекамерами и управляемые персональными компьютерами, позволяют получать комбинированное изображение сравниваемых объектов на телеэкране (телевизионная микроскопия), ис­следовать объекты в поляризованном свете, со светофильт­рами, в инфракрасных или ультрафиолетовых лучах, дают возможность чисто электронным путем изменять масштаб контрастность и яркость изображения.

Просвечивающая электронная микроскопия основана на рассея­нии электронов без изменения энергии при прохождении их через вещество или материал. Просвечивающий электронный микроскоп используют для изучения деталей микроструктуры объектов, находящихся за пределами разрешающей способно­сти оптического микроскопа (мельче 0, 1 мкм). Позволяет ис­следовать объекты — вещественные доказательства в виде тонких срезов (например, волокон или лакокрасочных покры­тий для исследования особенностей морфологии их поверхно­сти); суспензий, например, горюче-смазочных материалов. Микроскопы просвечивающего типа имеют разрешающую способность порядка 10-8см.

Растровая электронная микроскопия (РЭМ), получившая широкое распространение в экспертных исследованиях, основана на облучении изучаемого объекта хорошо сфоку­сированным с помощью специальной линзовой системы электронным пучком предельно малого сечения (зонд), обеспечивающим достаточно большую интенсивность от­ветного сигнала (вторичных электронов) от того участка объекта, на который попадает пучок. Разного рода сигналы представляют информацию об особенностях соответствую­щего участка объекта. Размер участка определяется сечени­ем зонда (10-8 ¸ 10-7 см). Чтобы получить информацию о достаточно большой области, дающей представление о морфологии объекта, зонд заставляют обегать («сканиро­вать» от англ. scanning — обегание) заданную площадь по определенной программе. РЭМ позволяет повысить глуби­ну резкости почти в 300 раз по сравнению с обычным оп­тическим микроскопом и достигать увеличения до 200 000х. Широко используется в экспертной практике для микро-трасологических исследований, изучения морфологических признаков самых разнообразных микрочастиц (металлов, лакокрасочных покрытий, волос, волокон, почвы, минера­лов). Многие растровые электронные микроскопы снабже­ны так называемыми микрозондами — приставками, по­зволяющими проводить рентгеноспектральный анализ эле­ментного состава изучаемой микрочастицы.

Методы анализа состава

Методы элементного анализа используются для установления элементного состава, т.е. качественного или количественного содержания определенных химических элемен­тов в данном веществе или материале. Круг их достаточно широк, однако наиболее распространенными в экспертной практи­ке являются следующие:

Эмиссионный спектральный анализ, заключающийся в том, что с помощью источника ионизации вещество пробы пе­реводится в парообразное состояние и возбуждается спектр излучения этих паров. Проходя далее через вход­ную щель специального прибора — спектрографа, излуче­ние с помощью призмы или дифракционной решетки разлагается на отдельные спектральные линии, которые затем регистрируются на фотопластинке или с помощью детектора. Качественный эмиссионный спектральный ана­лиз основан на установлении наличия или отсутствия в полученном спектре аналитических линий искомых эле­ментов, количественный — на измерении интенсивностей спектральных линий, которые пропорциональны концен­трациям элементов в пробе. Используется для исследова­ния широкого круга вещественных доказательств — взрывчатых веществ, металлов и сплавов, нефтепродуктов и горюче-смазочных материалов, лаков и красок и др.

Лазерный микроспектральный анализ основан на поглоще­нии сфокусированного лазерного излучения, благодаря вы­сокой интенсивности которого начинается испарение ве­щества мишени и образуется облако паров — факел, слу­жащий объектом исследования. За счет повышения темпе­ратуры и других процессов происходят возбуждение и ио­низация атомов факела с образованием плазмы, которая является источником анализируемого света. Фокусируя ла­зерное излучение, можно производить спектральный ана­лиз микроколичеств веществ, локализованных в малых объемах (до 10-3 см3) и устанавливать качественный и ко­личественный элементный состав самых разнообразных объектов практически без их разрушения.

Рентгеноспектральный анализ. Прохождение рентгеновского излучения через вещество сопровождается поглощением излучения, что приводит 'атомы вещества в возбужденное состояние. Возврат к исходному состоянию сопровождается излучением спектра характеристического рентгеновского излучения. По наличию спектральных линий различных элементов можно определить качественный, а по их интен­сивности — количественный элементный состав вещества. Это один из наиболее удобных методов элементного анализа вещественных доказательств, который на качественном и часто полуколичественном уровне является практически неразрушающим, только в редких случаях при исследовании ряда объектов, как правило, органической природы, могут произойти видоизменения отдельных свойства этих объек­тов. Используется для исследования широкого круга объек­тов: металлов и сплавов, частиц почвы, лакокрасочных по­крытий, материалов документов, следов выстрела и пр.

Под молекулярным составом объекта понимают качественное (количественное) содержание в нем простых и сложных химиче­ских веществ, для установления которого используются методы молекулярного анализа:

Химико-аналитические методы, которые традиционно при­меняются в криминалистике уже десятки лет, например, капельный анализ, основанный на проведении таких хими­ческих реакций, существенной особенностью которых яв­ляется манипулирование с капельными количествами рас­творов анализируемого вещества и реагента. Используют для проведения, в основном, предварительных исследова­ний ядовитых, наркотических и сильдействующих взрывча­тых и др. веществ. Для осуществления этого метода созда­ны наборы для работы с определенными видами следов: «Капля», «Капилляр» и др.

Микрокристаллоскопия, — метод качественного химиче­ского анализа, основанный на исследовании характерных кристаллических осадков, образующихся при воздействии соответствующих реактивов на исследуемый раствор. Ис­пользуется при исследовании следов травления в докумен­тах, фармацевтических препаратов, ядовитых и сильнодей­ствующих веществ и пр.

Однако основными методами исследо­вания молекулярного состава вещественных доказательств являются в настоящее время молекулярная спектроскопия и хроматография.

Молекулярная спектроскопия (спектрофотометрия) — метод, позволяющий изучать качественный и количественный мо­лекулярный состав веществ, основанный на изучении спек­тров поглощения, испускания и отражения электромагнит­ных волн, а также спектров люминесценции в диапазоне длин волн от ультрафиолетового до инфракрасного излуче­ния, включает:

инфракрасную (ИК) спектроскопию — метод основан на поглощении молекулами вещества ИК излучения, что переводит их в возбужденное состояние, и регистрации спектров поглощения с помощью спектрофотометров. Используется для установления состава нефтепродук­тов, лакокрасочных покрытий (связующего), парфюмерно-косметических товаров и пр.;

спектроскопию в видимой и ультрафиолетовой областях спектра, которая основана на поглощении электромаг­нитного излучения соединениями, содержащими хро­мофорные (определяющими окраску вещества) и ауксо-хромные (не определяющими поглощения, но усили­вающими его интенсивность) группы. По спектрам по­глощения судят о качественном составе и структуре мо­лекул. Количественный анализ основан на переводе вещества, если оно бесцветно, в поглощающее световой поток окрашенное соединение с помощью определен­ных реактивов и измерении оптической плотности с помощью специального прибора — фотометра. Оптиче­ская плотность при одинаковой толщине слоя тем больше, чем выше концентрация вещества в растворе. По электронным спектрам устанавливают, например, состав примесей и изменения, происходящие в объекте под воздействием окружающей среды.

Хроматография используется для анализа сложных смесей веществ, —метод, основанный на различном распределе­нии компонентов между двумя фазами — неподвижной и подвижной. В зависимости от агрегатного состояния под­вижной фазы различают газовую или жидкостную хрома-тографию.

В газовой хроматографии в качестве подвижной фазы ис­пользуется газ. Если неподвижной фазой является твердое тело (адсорбент), хроматография называется газо-адсорбционной, а ес­ли жидкость, нанесенная на неподвижный носитель, — газо­жидкостной.

В жидкостной хроматографии в качестве подвижной фазы используется жидкость. Аналогично газовой различают жидкостно-адсорбционную и жидкостно-жидкостную хроматографию.

Хроматографическое разделение проводят в трубках, заполненных сорбентом (колоночная хроматография), в капиллярах длиной в несколько десятков метров (капиллярная хроматография), на пластинах, покрытых слоем адсорбента (тонкослойная хроматография), на бумаге (бумажная хромато­графия). Методы хроматографии используют при исследовании, например, чернил и паст шариковых ручек, наркотических пре­паратов, пищевых продуктов и напитков, взрывчатых веществ, красителей, горюче-смазочных и многих других материалов.

Под фазовым составом понимают качественное или количе­ственное содержание определенных фаз в данном объекте. Фаза — это гомогенная часть гетерогенной системы, причем в данной химической системе фазы могут иметь одинаковый (α - железо и γ -железо в охотничьем ноже) и различный (оксиды меди на медном проводе) химический состав.

Фазовый состав всех объектов, имеющих кристаллическую структуру, устанавливается с помощью рентгенофазового анали­за, который успешно применяется в экспертной практике для неразрушающего исследования самого широкого круга объектов: металлов и сплавов, строительных, лакокрасочных материалов, фармацевтических препаратов, парфюмерно-косметических изделий, взрывчатых веществ и других. Метод основан на непо­вторимости расположения атомов и ионов в кристаллических структурах веществ, которые отражаются в соответствующих; рентгенометрических данных. Анализ этих данных и позволяет, устанавливать качественный и количественный фазовый состав.

Часто фазовый состав одновременно дает представление и о структуре объектов.

Методы анализа структуры

Металлографический и рентгеноструктурный анализы используются для изучения кристаллической структуры объектов. С помощью металлографического анализа изучаются изменения макро- и микроструктуры металлов и сплавов в связи с изменением их химического состава и условий обработки. Рентгеноструктурный анализ позволяет определять ориентацию и размеры кристаллов, их атомное и ионное строение, измерять внутрен­ние напряжения, изучать превращения, происшедшие в мате­риалах под влиянием давления, температуры, влажности, и на основании полученных данных судить о «биографии», источнике происхождения, способе изготовления той или иной детали, по разрушениям определять причины пожара, взрыва или автодо­рожного происшествия.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-04; Просмотров: 1628; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь