Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Изомерия альдегидов и кетонов



Для кетонов с числом атомов углерода больше 4-х характерна изомерия положения функциональной группы:

СН3-СН2-СН2-СО-СН3 пентанон-2

СН3-СН2-СО-СН2-СН пентанон-3

Кетоны изомерны альдегидам с таким же числом атомов углерода, а также енолам – соединениям, содержащим одновременно двойную связь и гидроксильную группу:

СН3-СН2-СНО пропаналь

СН3-СО-СН3 пропанон

СН2=СН-СН2ОН пропен-2-ол-1

Енолы (непредельные спирты), у которых двойная связь и гидроксильная группа находятся при одном атоме углерода, неустойчивы и перегруппировываются в кетоны или альдегиды.

CH3-CH=CHOH → СН3-СН2-СНО

Такая перегруппировка происходит при гидратации алкинов:


25 Хиноны. Особенности и свойства
Хиноны — полностью сопряжённые циклогексадиеноны и их аннелированные аналоги. Существуют два класса хинонов: пара-хиноны с пара-расположением карбонильных групп (1, 4-хиноны) и орто-хиноны с орто-расположением карбонильных групп (1, 2-хиноны). Благодаря способности к обратимому восстановлению до двухатомных фенолов некоторые производные пара-хинонов участвует в процессах биологического окисления в качестве коферментов ряда оксидоредуктаз.

Ядро хинонов не является ароматическим, вклад резонансных структур ароматического типа в свойства хинонов невелик. Спектроскопические свойства близки к свойствам 1, 2-ненасыщенных кетонов, при этом свойства 1, 4-хинонов ближе к перекрестно-сопряжённых ненасыщенным 1, 4-дикетонов, в то время как 1, 2-хиноны ближе к диендионам.

Так, например, простейший 1, 4-хинон — пара-бензохинон — имеет жёлтую окраску, тогда как 1, 2-бензохинон окрашен в ярко-красный цвет за счёт более длинной цепи сопряжения, обуславливающей батохромный сдвиг.

В инфракрасных спектрах для 1, 4-хинонов типичны две полосы поглощения карбонила, обусловленные резонансом Ферми при 5.98 и 6.06 мкм, в случае 1, 2-хинонов присутствует слабая полоса при 5.95 мкм и более сильная при 6.02 мкм. В спектрах 1H ЯМР сигналы протонов хиноидного ядра лежат в области δ ~6.7, что близко к к химическим сдвигам протонов при двойной связи α, β -ненасыщенных кетонов (δ 6.63 для α -протона метилвинилкетона[3]) и указывает на отсутствие эффекта кольцевого тока ароматической π -системы, то есть на неароматичность хиноидного ядра.

Хиноны — кристаллические вещества с высокими температурами плавления, низшие хиноны окрашены, так как молекула имеет протяжённую цепь сопряжения

 

26 Номенклатура, изомерия, классификация карбоновых кислот
Карбо́ новые кисло́ ты — класс органических соединений, молекулы которых содержат одну или несколько функциональных карбоксильных групп -COOH. Кислые свойства объясняются тем, что данная группа может сравнительно легко отщеплять протон. За редкими исключениями карбоновые кислоты являются слабыми. Например, у уксусной кислотыCH3COOH константа кислотности равна 1, 75·10− 5. Ди- и трикарбоновые кислоты более сильные, чем монокарбоновые.
По международной номенклатуре ИЮПАК, карбоновые кислоты называют, выбирая за основу наиболее длинную углеродную цепочку, содержащую группу -СООН, и добавляя к названию соответствующего углеводорода окончание «овая» и слово «кислота». При этом атому углерода, входящему в состав карбоксильной группы, присваивается первый номер. Например СН3-СН2-СООН — пропановая кислота, СН3-С(СН3)2-СООН — 2, 2-диметилпропановая кислота.
По рациональной номенклатуре к названию углеводорода добавляют окончание «карбоновая» и слово «кислота», не включая при этом в нумерацию цепи атом углерода карбоксильной группы. Например, С5Н9СООН — циклопентанкарбоновая кислота, СН3-С(СН3)2-СООН — трет-бутилкарбоновая кислота.
Многие из карбоновых кислот имеют тривиальные названия (некоторые из них приведены в таблице).

 

27 Строения карбоксильной группы, мезомерия карбоксилат аниона
28 Кислотные свойства карбоновых кислот
Спирты́ (устар. алкого́ ли) — органические соединения, содержащие одну или несколько гидроксильных групп (гидроксил, -OH), непосредственно связанных с атомом углерода в углеводородном радикале. Общая формула простых предельных (ациклических) спиртов CnH2n+1OH.

Химические свойства
1) Кислотные свойства: Спирты — слабые кислоты, могут образовывать соли и комплексы с активными металлами. Например:

СН3-ОН + Na —> СН3—О — Na + Н2

Соли одноатомных спиртов называются алкоголятами. Отдельные представители называются: CH3ONa - метилат натрия; C2H5ONa - этилат натрия. Алкоголяты представляют собой твердые вещества, растворимые в спирте. Они легко гидролизуются водой с образованием соответствующего спирта и щелочи:

СН3-ОNa + H2O—> СН3—ОH + NaOH

2) Взаимодействие с галогеноводородами:

R-OH + HHal -> RHal + H2O

HF не вступает в эту реакцию так как его кислотность недостаточна. Для проведения этой реакции ипользуют реактив Лукаса (Лукаша): безводный хлорид цинка, растворенный в концентрированной соляной кислоте. Реакция протекает быстрее всего с третичными спиртами, медленнее всего - с первичными. Данная реакция отображает способность спирта образовывать карбокатион.

3) Межмолекулярная дегидратация (образование простых эфиров):

R-OH + R'-OH -> R-O-R' + H2O

Катализатором данной реакции служит кислота. Чаще всего используют серную кислоту. Легче всего реагируют третичные спирты.

4) Внутримолекулярная дегидратация: C2H5OH -> CH2=CH2 + H2O Спирты дегидратируются по правилу Зайцева. Легче всего отщепляют воду третичные спирты. Межмолекулярная и внутримолекулярная дегидратация являются конкурирующими реакциями. Но вторая протекает при более высокой температуре.

5) Реакция этерификации

Спирты реагируют с кислотами при этом образуются сложные эфиры.

1)R—ОН + HNO3 —> R—О — NO2 + Н2О

2)R'-OH + R-COOH -> R-C(O)-OR' + H2O

Реакция является обратимой. Также при взаимодействии с неорганическими кислотами-окислителями (например с азотной) протекает побочная реакция - окисление.

6) Окисление спиртов Спирты окисляются легче, чем углеводороды. Первичные и вторичные спирты окисляются легче третичных. Первичные окисляются до альдегидов, вторичные — до кетонов. В случае первичных спиртов может протекать дальнейшее окисление образующихся альдегидов до соответствующих карбоновых кислот.

R-OH -> R-CHO -> R-COOH

Карбо́ новые кисло́ ты — класс органических соединений, молекулы которого содержат одну или несколько функциональных карбоксильных групп -COOH.

Наиболее важные химические свойства, характерные для большинства карбоновых кислот:

1) Карбоновые кислоты при реакции с металлами или их осно́ вными гидроксидами дают соли соответствующих металлов:

2 CH3COOH + Mg = (CH3COO)2Mg + H2
CH3COOH + NaOH = CH3COONa + H2O
Также карбоновые кислоты могут вытеснять более слабую кислоту из её соли, например:

CH3COOH + NaHCO3 = CH3COONa + H2CO3 (потом H2CO3 разлагается на углекислый газ и воду)
2) Карбоновые кислоты в присутствии кислого катализатора реагируют со спиртами, образуя сложные эфиры (реакция этерификации):

CH3COOH + СН3СН2ОН = CH3COOСН2СН3 + H2O
3) При нагревании аммонийных солей карбоновых кислот образуются их амиды:

CH3COONH4 = CH3CONH2 + H2O
4) Под действием SOCl2 карбоновые кислоты превращаются в соответствующие хлорангидриды.

CH3COOH + SOCl2 = CH3COCl + HCl + SO2


32 Номенклатура, изомерия, классификация эфиров
Среди функциональных производных карбоновых кислот особое место занимают сложные эфиры — соедине­ния, представляющие карбоновые кислоты, у которых атом водорода в карбоксильной группе заменен углеводородным радикалом. Общая формула сложных эфиров

R - C - O - R'
||
O

где R и R' — углеводородные радикалы (в сложных эфирах мура­вьиной кислоты R — атом водорода).

Названия сложных эфиров про­изводят от названия, углеводородного радикала и названия кисло­ты, в котором вместо окончания " -овая кислота" используют суффикс " ат", например:

CH3 - C - O - C2H5
  ||  
  O  
этилацетат
 
СН3-СН = СН - C -О-СН3
  ||  
  O  
метилбутен - 2 - ат

Часто сложные эфиры называют по тем остаткам кислот и спиртов, из которых они состоят. Так, рассмотренные вышесложные эфиры могут быть названы: этановоэтиловый эфир, кротоновометиловый эфир.

Для сложных эфиров характерны три вида изомерии:

1. Изомерия углеродной цепи, начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку — с пропилового спирта, например:

СН3- СН2-СН2-СН2- С - О-С2Н5
  ||  
  O  
этилбутират
 
СН3- СН-СН2 - C-О-С2Н5
  | ||
  CH3 O
этилизобутират

 

СН3- С -O-СН2-СН2-СН3
  ||  
  O  
пропилацетат
 
СН3- С-O- СН-СН3
  || |
  O CH3
изопропилацетат

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинается со сложных эфиров, вмолекулах которых содержится не менее 4 атомов углерода, на­пример:

СН3-СО-О-С2Н5   С2Н5-СО-О-СН3
этилацетат   метилпропионат

3. Межклассовая изомерия, например:

СН3-СО-О-СН3   С2Н5-СО-ОН
метилацетат   пропионовая кислота

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи; цис-транс-изомерия.

Физические свойства сложных эфиров. Сложные эфиры низших карбоновых кислот и спиртов представляют собой лету­чие, малорастворимые или практически нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат — груши и т.д.

Сложные эфиры имеют, как правило, более низкую темпера­туру кипения, чем соответствующие им кислоты. Например, стеа­риновая кислота кипит при 232 °С (Р = 15 мм рт. ст.), а метилстеарат— при 215 °С (Р =15 мм рт. ст.). Объясняется это тем, что между молекулами сложных эфиров отсутствуют водородные связи.

Сложные эфиры высших жирных кислот и спиртов — воско­образные вещества, не имеют запаха, в воде не растворимы, хо­рошо растворимы в органических растворителях. Например, пче­линый воск представляет собой в основном мирицилпальмитат (C15H31COOC31H63).


37 Свойство Краун-эфиров
Краун-эфиры (краун-соединения) — макрогетероциклические соединения, содержащие в своих циклах более 11 атомов, из которых не менее четырёх — гетероатомы, которые связаны между собой этиленовыми мостиками.

Как правило, гетероатомом является атом кислорода. Если один или несколько атомов кислорода заменены атомами азота или серы, то соответствующие соединения называются соответственно азакраун- или тиакраун-эфирами. Если краун-эфиры конденсированы с бензольными или циклогексановыми кольцами, то они относятся к бензокраун- или циклогексанкраун-эфирам. Получены краун-эфиры, содержащие в цикле атомы P, Si, As, а также амидные, сложноэфирные и некоторые другие функциональные группы.

Краун-эфиры являются вязкими жидкостями или кристаллическими веществами, хорошо растворимыми в большинстве органических растворителей и плохо растворимыми в воде. Их химические свойства зависят от природы гетероатомов и функциональных групп в цикле.

Краун-эфиры образуют устойчивые липофильные комплексы с катионами металлов, особенно щелочных и щелочноземельных. При этом катион металла включается во внутримолекулярную полость краун-эфира и удерживается благодаря ион-дипольному взаимодействию с гетероатомами. Наиболее устойчивы такие комплексы, у которых размер иона металла близок к размеру полости молекулы краун-эфира. Комплексы, в отличие от образующих их неорганических солей, часто растворимы в органических растворителях, что позволяет создать гомогенную среду для многих химических реакций (например, как окислитель используется раствор перманганата калия в бензоле в присутствии краун-эфиров — «пурпурный бензол»). За счет высокой стабильности комплексного иона возможно существование таких необычных соединений щелочных металлов как алкалиды и электриды.

Получение

Краун-эфиры получают конденсацией дигалогеналканов или диэфиров п-толуолсульфокислоты с полиэтиленгликолями в тетрагидрофуране, 1, 4-диоксане, диметоксиэтане, диметилсульфоксиде, трет-бутаноле в присутствии оснований (гидриды, гидроксиды, карбонаты); внутримолекулярной циклизацией монотозилатов полиэтиленгликолей в диоксане, диглиме или тетрагидрофуране в присутствии гидроксидов щелочных металлов, а также циклоолигомеризацией этиленоксида в присутствии BF3 и борофторидов щелочных и щелочноземельных металлов.

Азакраун-эфиры получают ацилированием ди- или полиаминов с частично защищёнными аминогруппами хлорангидридами дикарбоновых кислот с последующим восстановлением образующихся макроциклическихдиамидов; алкилированием дитозилдиаминов дигалогенпроизводными или дитозилатами гликолей в присутствии гидридов или гидроксидов щелочных металлов.

Тиакраун-эфиры получают из тиааналогов полиэтиленгликолей аналогично обычным краун-эфирам или алкилированием дитиолов дигалогенидами или дитозилатами в присутствии оснований.

Применение

Краун-эфиры используются для концентрирования, разделения, очистки и регенерации металлов, в том числе редкоземельных; для разделения нуклидов, энантиомеров; как лекарственные препараты, антидоты, пестициды; для создания ион-селективных датчиков и мембран; как катализаторы в реакциях с участием анионов.

Тетразакраун эфир циклен, в котором все атомы кислорода замещены на азот[1], используется в магнитно-резонансная томографии в качестве контрастного вещества.

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-05; Просмотров: 744; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.034 с.)
Главная | Случайная страница | Обратная связь