Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Строение бактериальной клетки



Бактерии являются прокариотами (рис. 1.1) и существенно отличаются от клеток растений и животных (эукариотов). Они относятся к одноклеточным организмам и состоят из клеточной стенки, цитоплазматической мембраны, цитоплазмы, нуклеоида (обязательных компонентов бактериальной клетки). Некоторые бактерии могут иметь жгутики, капсулы, споры (необязательные компоненты бактериальной клетки).

 

Рис. 1.1Комбинированное схематическое изображение прокариотической (бактериальной) клетки со жгутиками.

1 - гранулы полиоксимасляной кислоты; 2 - жировые капельки; 3 - включения серы; 4 - трубчатые тилакоиды; 5 - пластинчатые тилакоиды; 6 - пузырьки; 7 - хроматофоры; 8 - ядро (нуклеоид); 9 - рибосомы; 10 - цитоплазма; 11 - базальное тельце; 12 - жгутики; 13 - капсула; 14 - клеточная стенка; 15 - цитоплазматическая мембрана; 16 - мезосома; 17 - газовые вакуоли; 18 - ламеллярные структуры; 19 -гранулы полисахарида; 20 - гранулы полифосфата

Клеточная стенка

Клеточная стенка представляет собой внешнюю структуру бактерий толщиной 30-35 нм, главным компонентом которой является пептидогликан (муреин). Пептидогликан является структурным полимером, состоящим из чередующихся субъединиц N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединенных гликозидными связями (рис. 1.2).

Рис.1.2 Схематическое изображение однослойной структуры пептидогликана

Параллельно расположенные полисахаридные (гликановые) цепи скреплены между собой поперечными пептидными мостиками (рис. 1.3).

 

Рис. 1.3 Детальное строение структуры пептидогликана Светлые и черные короткие стрелки указывают связи, расщепляемые соответственно лизоцимом (мурамидазой) и специфической муроэндопептидазой

Полисахаридный каркас легко разрушается лизоцимом - антибиотиком животного происхождения. Пептидные связи являются мишенью для пенициллина, который ингибирует их синтез и препятствует формированию клеточной стенки. Количественное содержание пептидогликана влияет на способность бактерий окрашиваться по Граму. Бактерии, имеющие значительную толщину муреинового слоя (90-95%), стойко окрашиваются генцианвиолетом в сине-фиолетовый цвет и носят название грамположительных бактерий. Грамотрицательные бактерии с тонким слоем пептидогликана (5-10%) в клеточной стенке после действия спирта утрачивают генцианвиолет и дополнительно окрашиваются фуксином в розовый цвет. Клеточные стенки у грамположительных и грамотрицательных прокариот резко различаются как по химическому составу (табл. 1.1), так и по ультраструктуре (рис. 1.4).

 

Рис. 1.4 Схематическое изображение клеточной стенки у грамположительных (а) и грамотрицательных (б) прокариот: 1 - цитоплазматическая мембрана; 2 - пептидогликан; 3 - периплазматическое пространство; 4 - наружная мембрана; 5 - ДНК

 

Кроме пептидогликана, в клеточной стенке грамположительных бактерий содержатся тейхоевые кислоты (полифосфатные соединения), в меньшем количестве - липиды, полисахариды, белки.

Таблица 1.1. Химический состав клеточных стенок грамположительных и грамотрицательных прокариот

Грамотрицательные прокариоты имеют наружную мембрану, в состав которой входят липиды (22 %), белки, полисахариды, липопротеины. Клеточная стенка у бактерий выполняет в основном формообразующую и защитную функции, обеспечивает ригидность, формирует капсулу, определяет способность клеток к адсорбции фагов.

 

 

Цитоплазматическая мембрана


Цитоплазма бактериальной клетки ограничена от клеточной стенки тонкой полупроницаемой структурой толщиной 5-10 нм, называемой цитоплазматической мембраной (ЦПМ). ЦПМ состоит из двойного слоя фосфолипидов, пронизанных белковыми молекулами (рис. 1.5).

 


Рис. 1.5 Строение плазматической мембраны

Два слоя фосфолипидных молекул, обращенных гидрофобными полюсами друг к другу и покрытых двумя слоями молекул глобулярного белка. С ЦПМ связаны многие ферменты и белки, участвующие в переносе питательных веществ, а также ферменты и переносчики электронов конечных стадий биологического окисления (дегидрогеназы, цитохром-ная система, АТФ-аза). На ЦМП локализуются ферменты, катализирующие синтез пептидогликана, белков клеточной стенки, собственных структур. Мембрана является также местом превращения энергии при фотосинтезе. Периплазматическое пространство Периплазматическое пространство (периплазма) представляет собой зону между клеточной стенкой и ЦПМ. Толщина периплазмы составляет около 10 нм, объем зависит от условий среды и прежде всего от осмотических свойств раствора. Периплазма может включать до 20 % всей находящейся в клетке воды, в ней локализуются некоторые ферменты (фосфатазы, пермеазы, нуклеазы и др.) и транспортные белки -переносчики соответствующих субстратов. Цитоплазма Содержимое клетки, окруженное ЦПМ, составляет цитоплазму бактерий. Та часть цитоплазмы, которая имеет гомогенную коллоидную консистенцию и содержит растворимые РНК, ферменты, субстраты и продукты обмена веществ, обозначается как цитозоль. Другая часть цитоплазмы представлена различными структурными элементами: мезосомами, рибосомами, включениями, нуклеоидом, плазмидами. Рибосомы - субмикроскопические рибонуклеопротеиновые гранулы диаметром 15-20 нм. В рибосомах находится примерно 80-85 % всей бактериальной РНК. Рибосомы прокариот имеют константу седиментации 70 S. Они построены из двух частиц: 30 S (малая субъединица) и 50 S (большая субъединица)(рис.1.6).

 


Рис. 1.6. Рибосома (а) и ее субчастицы - большая (б) и малая (в) Рибосомы служат местом синтеза белка.

Цитоплазматические включения

Нередко в цитоплазме бактерий обнаруживаются различные включения, которые образуются в процессе жизнедеятельности: капельки нейтральных липидов, воска, серы, гранулы гликогена, в-гидроксимасляной кислоты (особенно у рода Bacillus). Гликоген и в-гидроксимасляная кислота служат для бактерий запасным источником энергии. У некоторых бактерий в цитоплазме находятся кристаллы белковой природы, обладающие ядовитым действием на насекомых. Некоторые бактерии способны накапливать фосфорную кислоту в виде гранул полифосфата (зерна волютина, метахроматические зерна). Они играют роль фосфатных депо и выявляются в виде плотных образований в форме шара или эллипса, располагающихся в основном у полюсов клетки. Обычно на полюсах бывает по одной грануле. Нуклеоид Нуклеоид - ядерный аппарат бактерий. Представлен молекулой ДНК, соответствующей одной хромосоме. Она замкнута, располагается в ядерной вакуоле, не имеет ограничивающей от цитоплазмы мембраны. С ДНК связано небольшое количество РНК и РНК-полимеразы. ДНК свернута вокруг центрального стержня, состоящего из РНК, и представляет собой высокоупорядоченную компактную структуру. Хромосомы большинства прокариот имеют молекулярную массу в пределах 1-3 х109, константу седиментации 1300-2000 S. Молекула ДНК включает 1, 6х10 нуклеотидных пар. Различия в генетическом аппарате прокариотических и эукариотических клеток обусловливают его название: у первых - нуклеоид (образование, подобное ядру), в отличие от ядра у вторых. В нуклеоиде бактерий содержится основная наследственная информация, которая реализуется в синтезе специфических белковых молекул. С ДНК бактериальной клетки связаны системы репликации, репарации, транскрипции и трансляции. Нуклеоид в прокариотической клетке может быть выявлен в окрашенных препаратах с помощью светового или фазово-контрастного микроскопа.э У многих бактерий в цитоплазме обнаружены внехромосомные генетические элементы - плазмиды. Они представляют собой замкнутые в кольца двухцепочечные ДНК, состоящие из 1500-40000 пар нуклеотидов и содержащие до 100 генов. Капсула Капсула - слизистый слой клеточной стенки бактерий, состоящий из полисахаридов или полипептидов. Микрокапсулу (толщиной менее 0, 2 мкм) способны формировать большинство бактерий. Жгутики Жгутики выполняют роль органа движения, позволяющего бактериям передвигаться со скоростью 20-60 мкм/сек. Бактерии могут иметь один или несколько жгутиков, располагающихся по всей поверхности тела либо собранных в пучки у одного полюса, у разных полюсов. Толщина жгутиков в среднем составляет 10-30 нм, а длина достигает 10-20 мкм. Основу жгутика составляет длинная спиральная нить (фибрилла), которая у поверхности клеточной стенки переходит в утолщенную изогнутую структуру - крюк и прикрепляется к базальной грануле, вмонтированной в клеточную стенку и ЦПМ (рис. 1.7).



Рис. 1.7. Схематическая модель базального конца жгутика Е. coli, основанная на электронных микрофотографиях выделенной органеллы Базальные гранулы имеют диаметр около 40 нм и состоят из нескольких колец (одна пара - у грамположительных бактерий, четыре - у грамотрицательных прокариот).

Удаление пептидогликанового слоя клеточной стенки ведет к потере способности бактерий к движению, хотя жгутики при этом остаются неповрежденными. Жгутики почти полностью состоят из белка флагеллина с некоторым содержанием углеводов и РНК.

Споры

Некоторые бактерии в конце периода активного роста способны образовывать споры. Этому предшествует обеднение среды питательными веществами, изменение ее рН, накопление ядовитых продуктов метаболизма. Как правило, одна бактериальная клетка образует одну спору - локализация спор различна (центральная, терминальная, субтерминальная - рис. 1.8).

 

Рис. 1.8. Типичные формы спорообразующих клеток. Если размеры спор не превышают поперечного размера палочковидной бактерии, то последняя называется бациллой.

Когда диаметр споры больше - бактерии имеют форму веретена и носят название клостридий. По химическому составу различие спор от вегетативных клеток состоит лишь в количественном содержании химических соединений. Споры содержат меньше воды и больше липидов. В состоянии споры микроорганизмы метаболически неактивны, выдерживают высокую температуру (140-150°С) и воздействие химических дезинфицирующих веществ, длительно сохраняются в окружающей среде. Попадая в питательную среду, споры прорастают в вегетативные клетки. Процесс прорастания спор включает три стадии: активации, начальной стадии и стадии роста. К активирующим агентам, нарушающим состояние покоя, относят повышенную температуру, кислую реакцию среды, механические повреждения и др. Спора начинает поглощать воду и с помощью гидролитических ферментов разрушает многие собственные структурные компоненты. После разрушения наружных слоев наступает период формирования вегетативной клетки с активацией биосинтеза, заканчивающейся делением клетки.

 

 


2. Движение и размножение бактерий.

2.1 Спорообразование и его биологическая роль

Движение бактерий не является особенностью всех бактерий, только некоторые способны двигаться. Органом движения является жгутик. Подвижные спирохеты движутся за счет ритмических изгибов всего тела. Для миксобактерий характерно реактивное движение за счет выделяющейся слизи. Характер движения у жгутиковых организмов зависит от типа жгутикования. Бактерии с полярным жгутиком всегда движутся по прямой линии, только изредка совершая легкие колебательные движения. Движение перитрихов беспорядочно и связано с оживленным кувырканием. У лофотрихов жгутики перемещаются подобно корабельному винту.

Скорость движения у различных бактерий различна. Некоторые виды при благоприятных условиях могут двигаться на расстояние в 10 раз превышающее размеры клетки.

Процесс спорообразования у бактерий является стадией развития. Спора играет роль защитного приспособления, которым природа снабдила их для борьбы с неблагоприятными условиями. Способностью образовывать споры - особые тельца эллиптической и округлой формы обладают палочковидные бактерии. На образование споры затрачивается или все содержимое клетки или большая часть протоплазматического содержимого. Спора образуется в результате уплотнения протоплазмы в определенном участке, содержащим ядерную субстанцию. Эта часть названа А.А. Имшеницким спорогенной зоной. В дальнейшем из этого участка вначале образуется проспора, которая далее покрывается специальными оболочками и превращается в спору. Длительность процесса 1, 5-24 часа.

В начале фазы спора хорошо окрашивается анилиновыми красками, а по мере созревания она становится более плотной и трудноокрашиваемой, что (связано) объясняется малопроницаемой наружной оболочкой. Однако, такое объяснение не вполне удовлетворительно, т.к. в зрелом состоянии оболочка споры окрашивается, а содержимое остается не окрашенным. Это дает основание предположить, что цитоплазма изменила физико-химические свойства. А именно: вода находится в связанном состоянии, благодаря чему спора приобретает теплоустойчивость, увеличивается содержание Са и Mg, что тоже повышает стойкость к нагреванию. В дальнейшем оболочка споры раздваивается: внутреннее - интина - участвует в прорастании споры и на ее базе строится оболочка новой вегетативной клетки. Наружная оболочка -экзина выполняет защитную функцию. По мере созревания споры, вегетативная клетка отмирает. Малая активность ферментов, плохая проницаемость наружной оболочки ограничивают обмен спор с внешней средой, что позволяет им сохранить жизнеспособность десятки и сотни лет. Жизнеспособные споры были выделены из египетских мумий, трупов мамонтов.

Обычно к спорообразованию бациллы приступают при истощении питательной среды или при накоплении в среде продуктов обмена. Механизм спорообразования не ясен.

В благоприятных условиях спора прорастает. Сначала она набухает, увеличивается ее размеры, происходит активизация ферментов, разрывается нарушенная оболочка и проросток выходит наружу. Переход из споры в вегетативную клетку может происходить за 40-50 мин. Обычно споры прорастают полярно, на одном или на обоих концах, иногда экваториально поперечно продольной оси, реже наблюдается косое прорастание.

Некоторые бациллы при определенных условиях теряют способность образовывать споры (например: при накоплении ядовитых веществ в среде возникают целые поколения - аспорогенные расы).

Таким образом, спора - защитное приспособление не имеющее никакого отношения к размножению.

Размножение бактерий

Основным путем размножения у бактерий является бесполое размножение. Однако у некоторых бактерий встречается и половое размножение - конъюгация.

Бесполое размножение: молодая клетка растет, достигает определенной величины и перпендикулярно ее длине образуется внутренняя перегородка. Затем перегородка расщепляется надвое и получается две дочерние клетки (фактически образуется две клетки: материнская и дочерняя). Скорость размножения зависит от условий, при благоприятных внешних факторах деление отмечается через каждые 20-30 мин, а у термофилов даже через 5 минут.

Разновидностью бесполого размножения является почкование, которое имеет место наряду с делением у микобактерий. Скорость размножения настолько велика, что теоретически микробные клетки заполнили бы все моря и океаны за несколько суток. Однако различные факторы тормозят процесс размножения бактерий: истощение питательных веществ в среде, накопление продуктов обмена, поедание их простейшими, растворение фагами, действие физических и химических факторов.

Некоторые бактерии имеет в своем развитии ряд последовательных изменений, которые можно назвать циклом развития. Пример: молодая сенная палочка (bac.subtilis) несет много жгутиков, которые она перед деление сбрасывает и усиленно делится, образуя длинные цепочки палочек. Затем цепочки распадаются на отдельные клетки и каждая из них вновь размножается. После многократного размножения клетки переходят к спорообразованию. При благоприятных условиях спора прорастает и образуется подвижная палочка.

Половое размножение - конъюгация впервые открыто Ледербергом и Татум (1946) и доказано генетическим методом. После их открытия было подтверждено с помощью электрического микроскопа.

Суть коньюгации: клетка - донор, реципиент сближаются, и между ними образуется цитоплазматический мостик, по которому генетический материал донора переходит в клетку реципиент. После расхождения эти клетки могут делиться бесполым путем. Биологический смысл этого процесса в том, что с передачей генетического материала передаются и определенные свойства, факторы, которыми не обладала клетка реципиент. Так могут чередоваться «факторы устойчивости» к стрептомицину, тетрациклину и др. веществам, в результате бактерии приобретают устойчивость к антибиотикам и другим терапевтическим средствам.


Поделиться:



Популярное:

  1. II,а. Промиелоциты - первые клетки класса V
  2. АНАТОМИЧЕСКОЕ СТРОЕНИЕ ОРГАНА ЗРЕНИЯ
  3. Ароматические углеводороды. Бензол, структурная формула, строение, свойства. Применение бензола и его гомологов.
  4. Бактерии, их строение, размножение, питание.
  5. Белки-каналы, их строение и функции
  6. Биологические свойства и значение жирных кислот определяются их строением, физическими и химическими свойствами.
  7. Более детальное строение коры мозжечка
  8. Влияние гемодинамических и лимфодинамических факторов на строение стенки вен и лимфатических сосудов.
  9. Вопрос 17. Режимы работы источника напряжения. Определение потенциалов точек цепи и их расчёт. Построение потенциальной диаграммы.
  10. Вопрос №2: Служба сбыта, ее цель, задачи и функции. Организационное построение службы сбыта.
  11. Вы еще пишете, что если после вечерней тренировки не есть 12-36 часов, то активизируются силовые клетки, а не пищевые. Так что, лучше не кушать после занятий?
  12. Выходными элементами сетчатки являются ганглиозные клетки.


Последнее изменение этой страницы: 2016-06-05; Просмотров: 1253; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.03 с.)
Главная | Случайная страница | Обратная связь