Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Статические механические характеристики АД, при частотном управлении с компенсацией падений напряжений



Для получения основных соотношений воспользуемся Т-образной схемой замещения АД, которая достаточно точно отражает реальные физические процессы в двигателе, и принимаем следующие допущения (схема изображена на рис. 5.11.1):

а) пренебрегаем потерями в стали и не учитываем её насыщение, т.е. в намагничивающей ветви учитываем только сопротивление Xμ .

б) напряжение и магнитный поток в зазоре считаем синусоидальным.

 

Поскольку в общем случае величина питающего напряжения и его частота изменяются, будем использовать систему относительных единиц. На схеме рис. 5.11.1.

;

Абсолютное скольжение

Найдя из схемы замещения , и подставив значение в уравнение электромагнитного момента , после преобразований получим уравнение механической характеристики АД при частотном управлении:

, где

; ; ; ;

Критический момент и критическое скольжение

;

При пропорциональном законе управления , который можно графическим представить в относительных единицах в виде прямой (рис. 5.11.2). точке А, для которой f1=f1H (j1=1) и U1=U1H (V1=1), соответствует естественная механическая характеристика. При пропорциональном законе, как известно из ранее изложенного, с уменьшением частоты перегрузочная способность двигателя уменьшается, особенно при j1< 0, 5. Чтобы она оставлялась неизменной, напряжение необходимо изменять в меньшей степени, чем частоту (см. пунктир на рис.5.11.2)

 

Механические характеристики в этом случае будут иметь вид, изображенный на рис. 5.11.3. Иначе говоря, можно подобрать такую зависимость напряжения U1 от частоты f1, которая обеспечит постоянство критического момента при изменении частоты, в том числе и при j1=0.

 

При малых частотах ток, потребляемый двигателем, больше, чем на естественной характеристике и двигатель сильно греется. Если же ему обеспечить номинальный нагрев, то придется уменьшить напряжение, что приведет к уменьшению Мкр. Получается, что принципиально невозможно реализовать закон U1=f(j1), при котором удовлетворялись бы 2 противоречия, т.е. обеспечение перегрузочной способности и нормального нагрева двигателя при снижении частоты. Для удовлетворения этих противоречий закон регулирования должен быть таким, чтобы напряжение изменялось не только в функции частоты, но и в функции нагрузки на валу двигателя. Этим самым можно обеспечить постоянство потокосцеплений (о чем было сказать выше).

Выразим потокосцепления, наводящие в обмотках статора и ротора ЭДС Е1, E2, E12 (ЭДС взаимной индукции без учета потоков рассеяния), а также эти ЭДС в относительных единицах.

; ; ; ; ; ; тогда

; ; .

Рассмотрим сначала управление при ys=const. Этот случай соответствует такому регулированию приложенного к статору напряжения, при котором обеспечивается компенсация падения напряжения на r1. Можно считать, что к схеме приложено напряжение не U1, а E1 (см. рис. 5.11.1). ЭДС e1 в этом случае становится независимой от нагрузки, т.е. постоянной при данной частоте. При изменении частоты теперь нужно изменять напряжение U1 пропорционально изменению частоты. Будет изменяться и e1. Это соответствует стабилизации потокосцепления . Если же будет изменяться нагрузка, то дополнительно нужно регулировать напряжение U1 т.о., чтобы скомпенсировать изменившееся падение напряжения на r1 и этим самым обеспечить как постоянство e1, так и постоянство y1.

Уравнение механических характеристик в этом случае можно получить, положив в исходном уравнении b=0, d=0, т.к. компенсация падения напряжения на r1 равносильна тому, как будто бы этого сопротивления вообще нет. Вместо V1 нужно положить e1. Для сокращения записи уравнения обозначим через K. Тогда

;

Рассчитав и изобразив механические характеристики для разных частот, получим увеличение Мкр ~ на 20% по сравнению с Мкр на естественной характеристике (см. рис. 5.11.4). В этом случае, как показывает анализ, потери в меди постоянны, потери в стали при снижении частоты уменьшаются. Т.о., если двигатель снабжен независимой вентиляцией, можно обеспечить длительный режим его работы без перегрева, как при больших, так и малых частотах.

 

Если обеспечить постоянство Е12(e12), получим закон, при котором будет постоянным поток в зазоре, т.е y12=const. Этого можно добиться, компенсируя падения напряжения на r1 и x1 путем увеличения напряжения, подводимого к ста­тору. При изменении частоты нужно пропорционально изменять Е12, что и соответствует компенсация падений напряжения на r1 и x1.

В этом случае можно считать, что r1=0; x1=0, следовательно b=0; d=0, c=x2, e=1. Уравнение механических характеристик и значение Мкр после подстановки в основное уравнение вместо V1 ЭДС е12 иметь вид:

;

Анализ показывает, что в этом случае получим увеличение Мкр примерно в 2 раза при всех частотах по сравнению с Мкр на естественной характеристике, что отраженно на рис. 5.11.5. При снижении частоты относительная жесткость характеристик возрастет.

 

Если напряжение, подводимое к статору, регулировать т.о., чтобы скомпенсировать падение напряжения и на.r1и на x1 и на x'2, то можно обеспечить постоянство потокосцепления ротора (y2=const). В этом случае можно считать, что двигатель питается напряжением E2, а не U1. Компенсация падений напряжения на этих сопротивлениях равносильна тому, что как будто этих сопротивлений нет вообще, следовательно, b=0; с=0; d=0; е=1. Подставляя в основное (исходное) уравнение вместо V1 e2, получим уравнения механических характеристик

;

 

Зависимость М от скольжения линейна. Характеристики получаются такими, как у компенсированного двигателя постоянного тока независимого возбуждения (рис. 5.11.6). Перегрузочная способность теоретически равна ¥. Именно этот вариант и реализуется в современных системах частотно регулируемых электроприводов.

 

При компенсации падения напряжения еще и на r'2, можно получить абсолютно жесткие характеристики с постоянным скольжением. Но это дается очень дорого, поэтому компенсацию падения напряжения на всех сопротивлениях двигателя, включая r'2 никогда не осуществляют.

В заключении отметим, что при реализации рассмотренных здесь законов возможности АД используется полностью. Система электропривода, обеспечивающая эти законы, называется системой Transvector.

 

 


Поделиться:



Популярное:

  1. A.16.15.3. Экран принудительной изоляции для использования в депо
  2. Cинтетический учет поступления основных средств, в зависимости от направления приобретения
  3. Cмыкание с декоративно-прикладным искусством
  4. E) Ценность, приносящая доход, депозит.
  5. F) объема производства при отсутствии циклической безработицы
  6. F) показывает, во сколько раз увеличивается денежная масса при прохождении через банковскую систему
  7. F)по критерию максимизации прироста чистой рентабельности собственного капитала
  8. G) осуществляется за счет привлечения дополнительных ресурсов
  9. H) Такая фаза круговорота, где устанавливаются количественные соотношения, прежде всего при производстве разных благ в соответствии с видами человеческих потребностей.
  10. H)результатов неэффективной финансовой политики по привлечению капитала и заемных средств
  11. I HAVE A STRANGE VISITOR (я принимаю странного посетителя)
  12. I MAKE A LONG JOURNEY (я предпринимаю длинное путешествие)


Последнее изменение этой страницы: 2016-07-12; Просмотров: 582; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь