Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Контекст и дескриптор процесса



С одной стороны, она опирается на базовое программное обеспечение ПК, входящее в его систему BIOS, с другой стороны, она сама является опорой для программного обеспечения более высоких уровней – прикладных и большинства служебных приложений.

Для того чтобы компьютер мог работать, на его жестком диске должна быть установлена (записана) операционная система. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ. Этот процесс называется загрузкой операционной системы.

Операционные системы различаются особенностями реализации алгоритмов управления ресурсами компьютера, областями использования.

Так, в зависимости от алгоритма управления процессором, операционные системы делятся на:

1. Однозадачные и многозадачные

2. Однопользовательские и многопользовательские

3. Однопроцессорные и многопроцессорные системы

4. Локальные и сетевые.

По числу одновременно выполняемых задач операционные системы делятся на два класса:

1. Однозадачные (MS DOS)

2. Многозадачные (OS/2, Unix, Windows)

В однозадачных системах используются средства управления периферийными устройствами, средства управления файлами, средства общения с пользователями. Многозадачные ОС используют все средства, которые характерны для однозадачных, и, кроме того, управляют разделением совместно используемых ресурсов: процессор, ОЗУ, файлы и внешние устройства.

В зависимости от областей использования многозадачные ОС подразделяются на три типа:

1. Системы пакетной обработки (ОС ЕС)

2. Системы с разделением времени (Unix, Linux, Windows)

3. Системы реального времени (RT11)

Системы пакетной обработки предназначены для решения задач, которые не требуют быстрого получения результатов. Главной целью ОС пакетной обработки является максимальная пропускная способность или решение максимального числа задач в единицу времени.

Эти системы обеспечивают высокую производительность при обработке больших объемов информации, но снижают эффективность работы пользователя в интерактивном режиме

В системах с разделением времени для выполнения каждой задачи выделяется небольшой промежуток времени, и ни одна задача не занимает процессор надолго. Если этот промежуток времени выбран минимальным, то создается видимость одновременного выполнения нескольких задач. Эти системы обладают меньшей пропускной способностью, но обеспечивают высокую эффективность работы пользователя в интерактивном режиме.

Системы реального времени применяются для управления технологическим процессом или техническим объектом, например, летательным объектом, станком и т.д.

По числу одновременно работающих пользователей на ЭВМ ОС разделяются на однопользовательские (MS DOS) и многопользовательские (Unix, Linux, Windows 95 – XP)

В многопользовательских ОС каждый пользователь настраивает для себя интерфейс пользователя, т.е. может создать собственные наборы ярлыков, группы программ, задать индивидуальную цветовую схему, переместить в удобное место панель задач и добавить в меню Пуск новые пункты.

В многопользовательских ОС существуют средства защиты информации каждого пользователя от несанкционированного доступа других пользователей.

Многопроцессорные и однопроцессорные операционные системы. Одним из важных свойств ОС является наличие в ней средств поддержки многопроцессорной обработки данных. Такие средства существуют в OS/2, Net Ware, Widows NT.По способу организации вычислительного процесса эти ОС могут быть разделены на асимметричные и симметричные.

Одним из важнейших признаков классификации ЭВМ является разделение их на локальные и сетевые. Локальные ОС применяются на автономных ПК или ПК, которые используются в компьютерных сетях в качестве клиента.

В состав локальных ОС входит клиентская часть ПО для доступа к удаленным ресурсам и услугам. Сетевые ОС предназначены для управления ресурсами ПК включенных в сеть с целью совместного использования ресурсов. Они представляют мощные средства разграничения доступа к информации, ее целостности и другие возможности использования сетевых ресурсов.

 

 

ВОПРОС 2

Управление процессами

Важнейшей частью операционной системы, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами. Процесс (или по-другому, задача) - абстракция, описывающая выполняющуюся программу. Для операционной системы процесс представляет собой единицу работы, заявку на потребление системных ресурсов. Подсистема управления процессами планирует выполнение процессов, то есть распределяет процессорное время между несколькими одновременно существующими в системе процессами, а также занимается созданием и уничтожением процессов, обеспечивает процессы необходимыми системными ресурсами, поддерживает взаимодействие между процессами.

Состояние процессов

В многозадачной (многопроцессной) системе процесс может находиться в одном из трех основных состояний:

ВЫПОЛНЕНИЕ - активное состояние процесса, во время которого процесс обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;

ОЖИДАНИЕ - пассивное состояние процесса, процесс заблокирован, он не может выполняться по своим внутренним причинам, он ждет осуществления некоторого события, например, завершения операции ввода-вывода, получения сообщения от другого процесса, освобождения какого-либо необходимого ему ресурса;

ГОТОВНОСТЬ - также пассивное состояние процесса, но в этом случае процесс заблокирован в связи с внешними по отношению к нему обстоятельствами: процесс имеет все требуемые для него ресурсы, он готов выполняться, однако процессор занят выполнением другого процесса.

В ходе жизненного цикла каждый процесс переходит из одного состояния в другое в соответствии с алгоритмом планирования процессов, реализуемым в данной операционной системе. Типичный граф состояний процесса показан на рисунке 2.1.

В состоянии ВЫПОЛНЕНИЕ в однопроцессорной системе может находиться только один процесс, а в каждом из состояний ОЖИДАНИЕ и ГОТОВНОСТЬ - несколько процессов, эти процессы образуют очереди соответственно ожидающих и готовых процессов. Жизненный цикл процесса начинается с состояния ГОТОВНОСТЬ, когда процесс готов к выполнению и ждет своей очереди. При активизации процесс переходит в состояние ВЫПОЛНЕНИЕ и находится в нем до тех пор, пока либо он сам освободит процессор, перейдя в состояние ОЖИДАНИЯ какого-нибудь события, либо будет насильно " вытеснен" из процессора, например, вследствие исчерпания отведенного данному процессу кванта процессорного времени. В последнем случае процесс возвращается в состояние ГОТОВНОСТЬ. В это же состояние процесс переходит из состояния ОЖИДАНИЕ, после того, как ожидаемое событие произойдет.

Рис. 2.1. Граф состояний процесса в многозадачной среде

 

 

ВОПРОС 3

 

Проблема синхронизации

Процессам часто нужно взаимодействовать друг с другом, например, один процесс может передавать данные другому процессу, или несколько процессов могут обрабатывать данные из общего файла. Во всех этих случаях возникает проблема синхронизации процессов, которая может решаться приостановкой и активизацией процессов, организацией очередей, блокированием и освобождением ресурсов.

Рис. 2.3. Пример необходимости синхронизации

Пренебрежение вопросами синхронизации процессов, выполняющихся в режиме мультипрограммирования, может привести к их неправильной работе или даже к краху системы. Рассмотрим, например (рисунок 2.3), программу печати файлов (принт-сервер). Эта программа печатает по очереди все файлы, имена которых последовательно в порядке поступления записывают в специальный общедоступный файл " заказов" другие программы. Особая переменная NEXT, также доступная всем процессам-клиентам, содержит номер первой свободной для записи имени файла позиции файла " заказов". Процессы-клиенты читают эту переменную, записывают в соответствующую позицию файла " заказов" имя своего файла и наращивают значение NEXT на единицу. Предположим, что в некоторый момент процесс R решил распечатать свой файл, для этого он прочитал значение переменной NEXT, значение которой для определенности предположим равным 4. Процесс запомнил это значение, но поместить имя файла не успел, так как его выполнение было прервано (например, в следствие исчерпания кванта). Очередной процесс S, желающий распечатать файл, прочитал то же самое значение переменной NEXT, поместил в четвертую позицию имя своего файла и нарастил значение переменной на единицу. Когда в очередной раз управление будет передано процессу R, то он, продолжая свое выполнение, в полном соответствии со значением текущей свободной позиции, полученным во время предыдущей итерации, запишет имя файла также в позицию 4, поверх имени файла процесса S.

Таким образом, процесс S никогда не увидит свой файл распечатанным. Сложность проблемы синхронизации состоит в нерегулярности возникающих ситуаций: в предыдущем примере можно представить и другое развитие событий: были потеряны файлы нескольких процессов или, напротив, не был потерян ни один файл. В данном случае все определяется взаимными скоростями процессов и моментами их прерывания. Поэтому отладка взаимодействующих процессов является сложной задачей. Ситуации подобные той, когда два или более процессов обрабатывают разделяемые данные, и конечный результат зависит от соотношения скоростей процессов, называются гонками.

Критическая секция

Важным понятием синхронизации процессов является понятие " критическая секция" программы.Критическая секция - это часть программы, в которой осуществляется доступ к разделяемым данным. Чтобы исключить эффект гонок по отношению к некоторому ресурсу, необходимо обеспечить, чтобы в каждый момент в критической секции, связанной с этим ресурсом, находился максимум один процесс. Этот прием называют взаимным исключением.

Простейший способ обеспечить взаимное исключение - позволить процессу, находящемуся в критической секции, запрещать все прерывания. Однако этот способ непригоден, так как опасно доверять управление системой пользовательскому процессу; он может надолго занять процессор, а при крахе процесса в критической области крах потерпит вся система, потому что прерывания никогда не будут разрешены.

Рис. 2.4. Реализация критических секций с использованием блокирующих переменных

Другим способом является использование блокирующих переменных. С каждым разделяемым ресурсом связывается двоичная переменная, которая принимает значение 1, если ресурс свободен (то есть ни один процесс не находится в данный момент в критической секции, связанной с данным процессом), и значение 0, если ресурс занят. На рисунке 2.4 показан фрагмент алгоритма процесса, использующего для реализации взаимного исключения доступа к разделяемому ресурсу D блокирующую переменную F(D). Перед входом в критическую секцию процесс проверяет, свободен ли ресурс D. Если он занят, то проверка циклически повторяется, если свободен, то значение переменной F(D) устанавливается в 0, и процесс входит в критическую секцию. После того, как процесс выполнит все действия с разделяемым ресурсом D, значение переменной F(D) снова устанавливается равным 1.

Если все процессы написаны с использованием вышеописанных соглашений, то взаимное исключение гарантируется. Следует заметить, что операция проверки и установки блокирующей переменной должна быть неделимой. Поясним это. Пусть в результате проверки переменной процесс определил, что ресурс свободен, но сразу после этого, не успев установить переменную в 0, был прерван. За время его приостановки другой процесс занял ресурс, вошел в свою критическую секцию, но также был прерван, не завершив работы с разделяемым ресурсом. Когда управление было возвращено первому процессу, он, считая ресурс свободным, установил признак занятости и начал выполнять свою критическую секцию. Таким образом был нарушен принцип взаимного исключения, что потенциально может привести к нежелаемым последствиям. Во избежание таких ситуаций в системе команд машины желательно иметь единую команду " проверка-установка", или же реализовывать системными средствами соответствующие программные примитивы, которые бы запрещали прерывания на протяжении всей операции проверки и установки.

Реализация критических секций с использованием блокирующих переменных имеет существенный недостаток: в течение времени, когда один процесс находится в критической секции, другой процесс, которому требуется тот же ресурс, будет выполнять рутинные действия по опросу блокирующей переменной, бесполезно тратя процессорное время. Для устранения таких ситуаций может быть использован так называемый аппарат событий. С помощью этого средства могут решаться не только проблемы взаимного исключения, но и более общие задачи синхронизации процессов. В разных операционных системах аппарат событий реализуется по своему, но в любом случае используются системные функции аналогичного назначения, которые условно назовем WAIT(x) и POST(x), где x - идентификатор некоторого события. На рисунке 2.5 показан фрагмент алгоритма процесса, использующего эти функции. Если ресурс занят, то процесс не выполняет циклический опрос, а вызывает системную функцию WAIT(D), здесь D обозначает событие, заключающееся в освобождении ресурса D. Функция WAIT(D) переводит активный процесс в состояние ОЖИДАНИЕ и делает отметку в его дескрипторе о том, что процесс ожидает события D. Процесс, который в это время использует ресурс D, после выхода из критической секции выполняет системную функцию POST(D), в результате чего операционная система просматривает очередь ожидающих процессов и переводит процесс, ожидающий события D, в состояние ГОТОВНОСТЬ.

Обобщающее средство синхронизации процессов предложил Дейкстра, который ввел два новых примитива. В абстрактной форме эти примитивы, обозначаемые P и V, оперируют над целыми неотрицательными переменными, называемыми семафорами. Пусть S такой семафор. Операции определяются следующим образом:

V(S) : переменная S увеличивается на 1 одним неделимым действием; выборка, инкремент и запоминание не могут быть прерваны, и к S нет доступа другим процессам во время выполнения этой операции.

P(S) : уменьшение S на 1, если это возможно. Если S=0, то невозможно уменьшить S и остаться в области целых неотрицательных значений, в этом случае процесс, вызывающий P-операцию, ждет, пока это уменьшение станет возможным. Успешная проверка и уменьшение также является неделимой операцией.

Рис. 2.5. Реализация критической секции с использованием системных
функций WAIT(D) и POST(D)

В частном случае, когда семафор S может принимать только значения 0 и 1, он превращается в блокирующую переменную. Операция P заключает в себе потенциальную возможность перехода процесса, который ее выполняет, в состояние ожидания, в то время как V-операция может при некоторых обстоятельствах активизировать другой процесс, приостановленный операцией P (сравните эти операции с системными функциями WAIT и POST).

Рассмотрим использование семафоров на классическом примере взаимодействия двух процессов, выполняющихся в режиме мультипрограммирования, один из которых пишет данные в буферный пул, а другой считывает их из буферного пула. Пусть буферный пул состоит из N буферов, каждый из которых может содержать одну запись. Процесс " писатель" должен приостанавливаться, когда все буфера оказываются занятыми, и активизироваться при освобождении хотя бы одного буфера. Напротив, процесс " читатель" приостанавливается, когда все буферы пусты, и активизируется при появлении хотя бы одной записи.

Введем два семафора: e - число пустых буферов и f - число заполненных буферов. Предположим, что запись в буфер и считывание из буфера являются критическими секциями (как в примере с принт-сервером в начале данного раздела). Введем также двоичный семафор b, используемый для обеспечения взаимного исключения. Тогда процессы могут быть описаны следующим образом:

 

ВОПРОС 6

Тупики.
Одной из проблем синхронизации являются взаимные блокировки, называемые также дедлоками, клинчами, или тупиками.

Рассмотрим пример тупика. Пусть двум потокам, принадлежащим разным процессам и выполняющимся в режиме мультипрограммирования, для выполнения их работы нужно два ресурса, например принтер и последо-вательный порт.
На рисунке показаны фрагменты соответствующих программ. Поток А запрашивает сначала принтер; а затем порт, а поток В запрашивает устройства в обратном порядке. Предположим, что после того, как ОС назначила принтер потоку А и установила связанную с этим ресурсом блокирующую переменную, поток А был прерван. Управление получил поток В, который сначала выполнил запрос на получение СОМ- порта, затем при выполнении следующей команды был заблокирован, так как принтер оказался уже занятым потоком А. Управление снова получил поток А, который в соответствии со своей программой сделал попытку занять порт и был заблокирован, поскольку порт уже выделен потоку В. В таком положении потоки А и В могут находиться сколь угодно долго.
В зависимости от соотношения скоростей потоков они могут либо взаимно блокировать друг друга, либо образовывать очереди к разделяемым ресурсам, либо совершенно независимо использовать разделяемые ресурсы.
В примере тупик был образован двумя потоками, но взаимно блокировать друг друга может и большее число потоков.
Невозможность потоков завершить начатую работу из-за возникновения взаимных блокировок снижает производительность вычислительной системы. Поэтому проблеме предотвращения тупиков уделяется большое внимание.
Тупики могут быть предотвращены на стадии написания программ, то есть программы должны быть написаны таким образом, чтобы тупик не мог возникнуть при любом соотношении взаимных скоростей потоков.
В тех же случаях, когда тупиковую ситуацию не удалось предотвратить, важно быстро и точно ее распознать, поскольку блокированные потоки не выполняют никакой полезной работы.
Существуют формальные, программнореализованные методы распознавания тупиков, основанные на ведении таблиц распределения ресурсов и таблиц запросов к занятым ресурсам. Анализ этих таблиц позволяет обнаружить взаимные блокировки.

Из учебника Олифера
Приведенный выше пример позволяет также проиллюстрировать еще одну проблему синхронизации — взаимные блокировки, называемые также дедлоками (deadlocks), клинчами (clinch), или тупиками. Покажем, что если переставить местами операции Р(е) и Р(Ь) в потоке-писателе, то при некотором стечении обстоятельств эти два потока могут взаимно блокировать друг друга.
Итак, пусть поток-писатель начинает свою работу с проверки доступности критической секции — операции Р(Ь), и пусть он первым войдет в критическую секцию. Выполняя операцию Р(е), он может обнаружить отсутствие свободных буферов и перейти в состояние ожидания. Как уже было показано, из этого состояния его может вывести только поток-читатель, который возьмет очередную запись из буфера. Но поток-читатель не сможет этого сделать, так как для этого ему потребуется войти в критическую секцию, вход в которую заблокирован потоком-писателем. Таким образом, ни один из этих потоков не может завершить начатую работу и возникнет тупиковая ситуация, которая не может разрешиться без внешнего воздействия.
Рассмотрим еще один пример тупика. Пусть двум потокам, принадлежащим разным процессам и выполняющимся в режиме мультипрограммирования, для выполнения их работы нужно два ресурса, например принтер и последовательный порт. Такая ситуация может возникнуть, например, во время работы приложения, задачей которого является распечатка информации, поступающей по модемной связи.
На рис. 4.22, а показаны фрагменты соответствующих программ. Поток А запрашивает сначала принтер, а затем порт, а поток В запрашивает устройства в обратном порядке. Предположим, что после того, как ОС назначила принтер потоку А и установила связанную с этим ресурсом блокирующую переменную, поток А был прерван. Управление получил поток В, который сначала выполнил запрос на получение СОМ-порта, затем при выполнении следующей команды был заблокирован, так как принтер оказался уже занятым потоком А. Управление снова получил поток А, который в соответствии со своей программой сделал попытку занять порт и был заблокирован, поскольку порт уже выделен потоку В. В таком положении потоки А и В могут находиться сколь угодно долго.
В зависимости от соотношения скоростей потоков они могут либо взаимно блокировать друг друга (рис. 4.22, б), либо образовывать очереди к разделяемым ресурсам (рис. 4.22, в), либо совершенно независимо использовать разделяемые ресурсы (рис. 4.22, г).
В рассмотренных примерах тупик был образован двумя потоками, но взаимно блокировать друг друга может и большее число потоков. На рис. 2.23 показано такое распределение ресурсов Ri между несколькими потоками Tj, которое привело к возникновению взаимных блокировок. Стрелки обозначают потребность потока в ресурсах. Сплошная стрелка означает, что соответствующий ресурс был выделен потоку, а пунктирная стрелка соединяет поток с тем ресурсом, который необходим, но не может быть пока выделен, поскольку занят другим потоком. Например, потоку Т1 для выполнения работы необходимы ресурсы R1 и R2, из ко-торых выделен только один — R1, а ресурс R2 удерживается потоком Т2. Ни один из четырех показанных на рисунке потоков не может продолжить свою работу, так как не имеет всех необходимых для этого ресурсов.
Невозможность потоков завершить начатую работу из-за возникновения взаимных блокировок снижает производительность вычислительной системы. Поэтому проблеме предотвращения тупиков уделяется большое внимание. На тот случай, когда взаимная блокировка все же возникает, система должна предоста-вить администратору-оператору средства, с помощью которых он смог бы распознать тупик, отличить его от обычной блокировки из-за временной недоступности ресурсов. И наконец, если тупик диагностирован, то нужны средства для снятия взаимных блокировок и восстановления нормального вычислительного процесса.


Тупики могут быть предотвращены на стадии написания программ, то есть программы должны быть написаны таким образом, чтобы тупик не мог возникнуть
при любом соотношении взаимных скоростей потоков. Так, если бы в примере, показанном на рис. 4.22, поток А и поток В запрашивали ресурсы в одинаковой последовательности, то тупик был бы в принципе невозможен. Другой,, более гибкий подход к предотвращению тупиков заключается в том, что ОС каждый раз при запуске задач анализирует их потребности в ресурсах и определяет, может ли в данной мультипрограммной смеси возникнуть тупик. Если да, то запуск новой задачи временно откладывается. ОС может также использовать опре-деленные правила при назначении ресурсов потокам, например, ресурсы могут выделяться операционной системой в определенной последовательности, общей для всех потоков.
В тех же случаях, когда тупиковую ситуацию не удалось предотвратить, важно быстро и точно ее распознать, поскольку блокированные потоки не выполняют никакой полезной работы. Если тупиковая ситуация образована множеством потоков, занимающих массу ресурсов, распознавание тупика является нетривиальной задачей. Существуют формальные, программно-реализованные методы распознавания тупиков, основанные на ведении таблиц распределения ресурсов и таблиц запросов к занятым ресурсам. Анализ этих таблиц позволяет обнаружить взаимные блокировки.
Если же тупиковая ситуация возникла, то не обязательно снимать с выполнения все заблокированные потоки. Можно снять только часть из них, освободив ресурсы, ожидаемые остальными потоками, можно вернуть некоторые потоки в область подкачки, можно совершить «откат» некоторых потоков до так называемой контроль-ной точки, в которой запоминается вся информация, необходимая для восстановления выполнения программы с данного места. Контрольные точки расставляются в программе в тех местах, после которых возможно возникновение тупика.

БИЛЕТ 7

 

 

ВОПРОС 8

 

 

ВОПРОС 9-17

Управление памятью

Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной системой. Обычно ОС располагается в самых младших адресах, однако может занимать и самые старшие адреса. Функциями ОС по управлению памятью являются: отслеживание свободной и занятой памяти, выделение памяти процессам и освобождение памяти при завершении процессов, вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место, а также настройка адресов программы на конкретную область физической памяти.

Типы адресов

Для идентификации переменных и команд используются символьные имена (метки), виртуальные адреса и физические адреса (рисунок 2.7).

Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.

Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Так как во время трансляции в общем случае не известно, в какое место оперативной памяти будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что программа будет размещена, начиная с нулевого адреса. Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство. Максимальный размер виртуального адресного пространства ограничивается разрядностью адреса, присущей данной архитектуре компьютера, и, как правило, не совпадает с объемом физической памяти, имеющимся в компьютере.

Рис. 2.7. Типы адресов

Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды. Переход от виртуальных адресов к физическим может осуществляться двумя способами. В первом случае замену виртуальных адресов на физические делает специальная системная программа - перемещающий загрузчик. Перемещающий загрузчик на основании имеющихся у него исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, и информации, предоставленной транслятором об адресно-зависимых константах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.

Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, при этом операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Второй способ является более гибким, он допускает перемещение программы во время ее выполнения, в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку памяти. Вместе с тем использование перемещающего загрузчика уменьшает накладные расходы, так как преобразование каждого виртуального адреса происходит только один раз во время загрузки, а во втором случае - каждый раз при обращении по данному адресу.

В некоторых случаях (обычно в специализированных системах), когда заранее точно известно, в какой области оперативной памяти будет выполняться программа, транслятор выдает исполняемый код сразу в физических адресах.

Перемещаемые разделы

Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших либо в сторону младших адресов, так, чтобы вся свободная память образовывала единую свободную область (рисунок 2.11). В дополнение к функциям, которые выполняет ОС при распределении памяти переменными разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей. Эта процедура называется " сжатием". Сжатие может выполняться либо при каждом завершении задачи, либо только тогда, когда для вновь поступившей задачи нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц, а во втором - реже выполняется процедура сжатия. Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то преобразование адресов из виртуальной формы в физическую должно выполняться динамическим способом.

Рис. 2.11. Распределение памяти перемещаемыми разделами

Хотя процедура сжатия и приводит к более эффективному использованию памяти, она может потребовать значительного времени, что часто перевешивает преимущества данного метода.

Понятие виртуальной памяти

Уже достаточно давно пользователи столкнулись с проблемой размещения в памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением было разбиение программы на части, называемые оверлеями. 0-ой оверлей начинал выполняться первым. Когда он заканчивал свое выполнение, он вызывал другой оверлей. Все оверлеи хранились на диске и перемещались между памятью и диском средствами операционной системы. Однако разбиение программы на части и планирование их загрузки в оперативную память должен был осуществлять программист.

Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием виртуальная память. Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную оперативную память. Пользователь пишет программы так, как будто в его распоряжении имеется однородная оперативная память большого объема, но в действительности все данные, используемые программой, хранятся на одном или нескольких разнородных запоминающих устройствах, обычно на дисках, и при необходимости частями отображаются в реальную память.

Таким образом, виртуальная память - это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся оперативную память; для этого виртуальная память решает следующие задачи:

  • размещает данные в запоминающих устройствах разного типа, например, часть программы в оперативной памяти, а часть на диске;
  • перемещает по мере необходимости данные между запоминающими устройствами разного типа, например, подгружает нужную часть программы с диска в оперативную память;
  • преобразует виртуальные адреса в физические.

Все эти действия выполняются автоматически, без участия программиста, то есть механизм виртуальной памяти является прозрачным по отношению к пользователю.

Наиболее распространенными реализациями виртуальной памяти является страничное, сегментное и странично-сегментное распределение памяти, а также свопинг.

Страничное распределение

На рисунке 2.12 показана схема страничного распределения памяти. Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами. В общем случае размер виртуального адресного пространства не является кратным размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.

Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками).

Размер страницы обычно выбирается равным степени двойки: 512, 1024 и т.д., это позволяет упростить механизм преобразования адресов.

При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные - на диск. Смежные виртуальные страницы не обязательно располагаются в смежных физических страницах. При загрузке операционная система создает для каждого процесса информационную структуру - таблицу страниц, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск. Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемости (выгрузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчета числа обращений за определенный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти.

Рис. 2.12. Страничное распределение памяти

При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы страниц данного процесса.

При каждом обращении к памяти происходит чтение из таблицы страниц информации о виртуальной странице, к которой произошло обращение. Если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания, и активизируется другой процесс из очереди готовых. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то решается вопрос, какую страницу следует выгрузить из оперативной памяти.

В данной ситуации может быть использовано много разных критериев выбора, наиболее популярные из них следующие:

  • дольше всего не использовавшаяся страница,
  • первая попавшаяся страница,
  • страница, к которой в последнее время было меньше всего обращений.

В некоторых системах используется понятие рабочего множества страниц. Рабочее множество определяется для каждого процесса и представляет собой перечень наиболее часто используемых страниц, которые должны постоянно находиться в оперативной памяти и поэтому не подлежат выгрузке.

После того, как выбрана страница, которая должна покинуть оперативную память, анализируется ее признак модификации (из таблицы страниц). Если выталкиваемая страница с момента загрузки была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то она может быть просто уничтожена, то есть соответствующая физическая страница объявляется свободной.

Рассмотрим механизм преобразования виртуального адреса в физический при страничной организации памяти (рисунок 2.13).


Поделиться:



Популярное:

  1. Автоматизация процесса расследования преступлений
  2. Актуальность проведения контроля за технологическими процессами и качеством продукции
  3. Базовая модель в контексте формализованной схемы моделирования хозяйственного механизма
  4. Банки как центры управления финансово-кредитными процессами в условиях рынка.
  5. Безопасность технологического процесса
  6. БИЛЕТ 51. ИСТОРИКО-ЛИТЕРАТУРНЫЙ ПРОЦЕСС И ЕГО СОСТАВЛЯЮЩИЕ. ГЛОБАЛЬНЫЕ ТЕНДЕНЦИИ ИСТОРИКО-ЛИТЕРАТУРНОГО ПРОЦЕССА.
  7. Вопрос 11. Социально-психологическая среда. Психология больших и малых групп. Управление групповыми процессами.
  8. Вопрос 234. Участники арбитражного процесса.
  9. Вопрос 248. Судебные извещения лиц, участвующих в деле, и иных участников арбитражного процесса. Последствия неявки в судебное заседание участников арбитражного процесса.
  10. Вопрос 426. Участники процесса в Конституционном Суде РФ, их права и обязанности. Порядок исследования вопросов в судебных заседаниях Конституционного Суда РФ.
  11. Вопрос 5. Роль тары и упаковки в торгово-технологических процессах. Классификация и характеристика основных видов тары
  12. Вопрос 54. Адвокатское расследование как институт уголовного процесса. Понятие, природа, сущность и его значение.


Последнее изменение этой страницы: 2016-07-14; Просмотров: 613; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.081 с.)
Главная | Случайная страница | Обратная связь