Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ.ТИПЫ ГАЗОВОГО РАЗРЯДА.



В обычных условиях газ - это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока.
Газ-проводник - это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.

Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.


Ионизация газа

- это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.


Газовый разряд

- это эл.ток в ионизированных газах.
Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц


- газ перестает быть проводником, если ионизация прекращается, это происходит в следствие рекомбинации ( воссоединения противоположно заряженных частиц).

Существует самостоятельный и несамостоятельный газовый разряд.

Несамостоятельный газовый разряд

- если действие ионизатора прекратить, то прекратится и разряд.

Когда разряд достигает насыщения - график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

Самостоятельный газовый разряд

- в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации ( = ионизации эл. удара); возникает при увеличении разности потенциалов между электродами ( возникает электронная лавина).
Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при Ua = Uзажигания.

Электрический пробой газа

- процесс перехода несамостоятельного газового разряда в самостоятельный.

Самостоятельный газовый разряд бывает 4-х типов:

1. тлеющий - при низких давлениях(до нескольких мм рт.ст.) -наблюдается в газосветных трубках и газовых лазерах.
2. искровой - при нормальном давлении и высокой напряженности электрического поля (молния - сила тока до сотен тысяч ампер).
3. коронный - при нормальном давлении в неоднородном электрическом поле ( на острие ).
4. дуговой - большая плотность тока, малое напряжение между электродами ( температура газа в канале дуги -5000-6000 градусов Цельсия); наблюдается в прожекторах, проекционной киноаппаратуре.

Эти разряды наблюдаются:

тлеющий - в лампах дневного света;
искровой - в молниях;
коронный - в электрофильтрах, при утечке энергии;
дуговой - при сварке, в ртутных лампах.

Виды газовых разрядов

Действие газоразрядных приборов основано на электрическом разряде, происходящем в инертном газе, водороде или различных парах.

Как известно, газовый разряд может существовать только при ионизации молекул газа или паров, что обычно сопровождается образованием свободных электронов и положительных ионов (молекул, потерявших один или несколько электронов). Этими частицами в основном и создается ток газового разряда. Отрицательные ионы, представляющие собой молекулы с лишними электронами, образуются редко, оказываются неустойчивыми и поэтому в газовом разряде существенной роли не играют.

Все газовые разряды делятся на два основных вида:

1. Несамостоятельный газовый разряд возникает в приборе при действии внешних (сторонних) ионизаторов. Этот разряд в свою очередь разделяется на несколько подвидов:

а) тихий разряд (возникает при воздействии на прибор ряда естественных ионизаторов: космических лучей, радиации земной коры, активной деятельности солнца и т. д.);

б) несамостоятельный (низковольтный) дуговой разряд (возникает в ионных приборах с термокатодом). При этом разряде электроны, излучаемые накаленным катодом и ускоряемые электрическим полем анода, производят ударную ионизацию газа.

2. Самостоятельный газовый разряд возникает и поддерживается в приборе только под действием сил электрического поля. Этот газовый разряд также разделяется на несколько подвидов:

а) тихий самостоятельный (коронный) разряд;

б) высокочастотный газовый разряд. Эти разряды поддерживаются исключительно благодаря ударной ионизации молекул газа;

в) тлеющий разряд. При этом газовом разряде ударная ионизация осуществляется электронами, выбиваемыми из холодного катода (ХК) при бомбардировке его поверхности положительными ионами;

г) самостоятельный дуговой разряд, у которого ударная ионизация осуществляется в основном электронами электростатической эмиссии.

 

22.Магнитное поле и его характеристики.Магни́ тное по́ ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля.

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля

Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поляприводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

Рис. 34. Схемы действия магнитного поля на движущиеся электрические заряды: положительный ион (а) и электрон (б).

Рис. 35. Магнитное поле, созданное постоянным магнитом.

Рис. 36. Однородное магнитное поле между полюсами постоянного магнита.

Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

 

 

Магнитная индукция и магнитный поток. Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м2 или 1 см2, расположенную перпендикулярно магнитному полю. Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле

Ф = BS (40)

где S — площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:

B=Ф/S (41)

Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф2 будет меньше Ф1.

В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м2.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 1786; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь