Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Характеристика легочной вентиляции.



Легочной вентиляцией называют объем воздуха, вдыхаемого за единицу времени. Легочную вентиляцию подразделяют на несколько компонентов.

Дыхательный объем — количество воздуха, которое человек вдыхает и выдыхает в покое.

Резервный объем вдоха — количество воздуха, которое человек может до­полнительно вдохнуть после нормального вдоха.

Резервный объем выдоха — количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

Остаточный объем — количество воздуха, оставшееся в легких после максимального выдоха.

Жизненная емкость легких — максимальное количество воздуха, кото­рое можно выдохнуть после наибольшего вдоха, состоящее из суммы дыха­тельного объема и резервных объемов вдоха и выдоха. Она зависит от многих факторов: конституции, возраста, пола, степени тренированности. С возрастом ЖЕЛ уменьшается, что связано со снижением эластичности легких и подвижности грудной клетки. У женщин ЖЕЛ в среднем на 25 % ниже, чем у мужчин. У мужчин ростом 180 см она в среднем составляет 4, 5 л.

Общая емкость легких — максимальное количество воздуха, содержаще­гося в легких при наибольшем вдохе, является суммой жизненной емкости и общей емкости легких.

«Мертвое» воздушное пространство. Воздухоносные пути, включающие полости носа, рта, трахеи, бронхов, образуют так называемое «мертвое» пространство. Воздух, занимающий объем «мертвого» пространства, не уча­ствует в газообмене. Во время вдоха первая порция вдыхаемого воздуха по­ступает в альвеолы из «мертвого» пространства. Во время выдоха она воз­вращается последней в воздухоносные пути этого пространства, т.е. факти­чески один и тот же воздух «мертвого» пространства без обновления соста­ва поступает в легкие. Выдыхаемый воздух представляет собой смесь альвеолярного газа и воздуха мертвого пространства. В чистом виде альвеолярный газ выводится лишь с последней порцией воздуха.

 

Газообмен в легких

Происходящий в воздухоносных путях перенос газов направлен на поддержание постоянства парциального давления О2 и СО2 в легочных альвеолах, где идет непрерывный обмен газов с кровью, протекающей через легочные капилляры. В среднем парциальное давление кислорода при нормальных атмосферных условиях поддерживается в альвеолярном воздухе на уровне ~ 102 мм рт.ст., а дву­окиси углерода — на уровне около 40 мм рт.ст.

Перенос О2 из альвеолярного газа в кровь и СО2 из крови в альвеолярный газ происходит исключительно путем диффузии. Ее движущей силой служат разности (градиенты) парциальных давлений (напряжений) О2 и СО2 по обе стороны аэрогематического барьера (толщина 1 мкм). Кислород и углекислый газ диффундируют в растворенном состоянии, т.к. все воздухоносные пути увлажнены слоем слизи. Благодаря огромной общей поверхности альвеол, составляющей 80-100 м2, имеются условия для достаточно эффек­тивной диффузии. Тонкий слой легочной ткани, отделяющей кровь легочных капилля­ров от альвеолярного пространства, легко проницаем для газов. В процессе диффузии газы проходят через альвеолярный эпителий, интерстинальное пространство между основными мембранами, эпителий капилляров, плаз­му крови, мембраны эритроцитов во внутреннюю среду эритроцитов.

Вдыхаемый воздух имеет наибольшее парциальное давление кислоро­да (100 мм рт.ст.) и наименьшее парциальное давление двуокиси углерода (20 мм рт.ст.). В то же время парциальное давление кислорода в притекающей к альвеолам венозной крови не пре­вышает 40 мм рт.ст., а парциаль­ное давление двуокиси углерода составляет 50 мм рт.ст. Благодаря градиенту давлений происходит транспорт газов через стенку альвеол: двуокись углерода покидает венозную кровь и поступает в альвеолярный воздух, а кислород диффундирует в противопо­ложном направлении — из альвеолярного воздуха в кровь. Оттекающая от альвеол легких артериальная кровь имеет парциальное давление кислоро­да 100 мм рт.ст., а двуокиси углерода — 40 мм рт.ст.

Транспорт газов кровью

Транспорт кислорода

Кислород транспортируется кровью двумя способами:

1. в связанном с гемоглобином виде — в форме оксигемоглобина (около 98% всего О2).

2. за счет физического растворения газа в плазме крови. В плазме растворена лишь небольшая часть О2 (около 2%).

Большая часть кислорода переносится кровью в виде химических соединений с гемоглобином, который легко вступает с ним в непрочное соединение.

Hb + O2 ↔ HbO2

(дезоксигемоглобин) (оксигемоглобин)

Один моль гемоглобина может связать до четырех молей кислорода и в среднем 1 г гемоглобина способен связать 1, 34—1, 36 мл кислорода. Учитывая, что в крови человека содержится примерно 150 г/л гемоглобина, 100 мл крови могут переносить около 21 мл О2. Это так называемая кислородная емкость крови.

В эмбриональный период гемоглобин человека имеет особую форму – фетальный гемоглобин F. Он способен переносить на 20-30 % больше кислорода, обладает большей способностью связываться с ним ( сродством к кислороду ). К моменту рождения гемоглобин F составляет 50-80%, к 3 годам около 2 %, затем исчезает. Большая часть гемоглобина взрослого человека (95-98%) состоит из фракции А (взрослый гемоглобин), около 1-2% гемоглобин F (фетальный).

Гемоглобин легко соединяется с угарным газом – оксидом углерода СО, образуя устойчивое соединение - карбоксигемоглобин. Химическое сродство СО к гемоглобину почти в 300 раз выше, чем к О2, поэтому даже при небольших концентрациях СО в воздухе гемоглобин оказывается блокирован для кислорода (на 80% при концентрации СО 0, 1 %, если концентрация около 1% - гибель через несколько минут).

Способность гемоглобина связывать и отдавать O2 зависит от напряжения кислорода, угольной кислоты в крови, рН крови, ее температуры и т.д. Графическое изображение зависимости процента насыщения гемоглобина кислородом от напряжения О2 называют кривой диссоциации оксигемоглобина. Участок кривой, соответствующий низким парциальным значениям кислорода, характеризует содержание оксигемо­глобина в капиллярах тканей, а фрагмент кривой, лежащий в области высо­кого парциального давления кислорода, соответствует крови в легочных капиллярах. Чем выше парциальное давление кислорода, тем больше содержание оксигемоглобина; при парциальном давлении 80-100 мм рт.ст. практически весь гемоглобин насыщается кислородом, за исключением незначительно­го количества (1—2 %), «занятого» двуокисью углерода. В области высокого парциального давления кислорода (в легких) кривая близка к насыщению кислородом крови, а в области низких значений парциального давления кислорода в тканях зна­чительная часть оксигемоглобина отдает кислород и превращается в вос­становленную форму.

Динамика кривой зависит от нескольких факторов. Кривая может сдвигаться относительно оси абсцисс вправо или влево (эффект Бора) в зависимости от температуры, парциального давления двуокиси углеро­да и величины рН. При увеличении содержания двуокиси углерода, температуры и закислении крови ( ацидоз ) кривая диссоциации оксигемоглобина сдвигается вправо. Это отражает по­вышение способности оксигемоглобина отдавать кислород тканям и тем самым высвобождаться для дополнительного связывания СО2 и переноса его избытка из тканей в легкие. Напротив, при снижении Рсо2 и защелачивании крови ( алкалоз ) кривая сдвигается влево.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 614; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь